Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 2 | 467-472

Article title

Materials Patterning and Characterisation at the Nanometre Scale Using Focused MeV Ion Beams: Present Achievements and Future Prospects

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A key phenomenon in the interaction of MeV ions and solids is that the energy transferred from the primary ions to the target electrons is high compared with atomic and molecular binding energies, but low compared with the ion energy. This means that there is a high probability of modifying the chemical properties of the material (for patterning) or of inducing the emission of electromagnetic radiation (for analysis), yet the path of particle is changed by a negligible amount, which means that focused beams remain sharp even after penetrating long depths into the material. Developments in focusing MeV ions in recent years have pushed the useable beam diameters into the sub-micrometre region, which means that nuclear microbeams are poised to make an impact in both direct write fabrication and micro-analysis at length scales of interest in nanotechnology or microbiology. This paper reviews the science and technology underlying the use of nuclear microbeams (ion solid interactions, focusing systems) and reports on the present status and trends of applications in sub-micron scale applications.

Keywords

EN

Contributors

author
  • University of Surrey Ion Beam Centre, Guildford, GU2 7XH, U.K.

References

  • 1. J.F. Ziegler, J.P Biersack, 2008, http://www.srim.org
  • 2. R. Spohr, in: Ion Track and Microtechnology Principles and Application, Ed. K. Bethge, Vieweg & Sohn, Braunschweig 1990
  • 3. P. Apel, A. Schulz, R. Spohr, C. Trautmann, V. Vutsadakis, Nucl. Instrum. Methods Phys. Res. B 146, 468 (1998)
  • 4. G.W. Grime, F. Watt, Beam Optics of Quadrupole Probe-Forming Systems, Hilger, Bristol 1984
  • 5. F. Watt, G.W. Grime, G.D. Blower, J. Takacs, IEEE Trans. Nucl. Sci. 28, 1413 (1981)
  • 6. T. Butz, R.-H. Flagmeyer, J. Heitmann, D.N. Jamieson, G.F. Legge, D. Lehmann, U. Reibetanz, T. Reinert, A. Saint, D. Spemann, R. Szymanski, W. Tröger, J. Vogt, J. Zhu, Nucl. Instrum. Methods Phys. Res. B 161-163, 323 (2000)
  • 7. F. Watt, J.A. van Kan, I. Rajta, A. Bettiol, T.F. Choo, M.B.H. Breese, T. Osipowicz, Nucl. Instrum. Methods Phys. Res. B 210, 14 (2003)
  • 8. A.D. Dymnikov, G.A. Glass, Nucl. Instrum. Methods Phys. Res. B 219-220, 994 (2004)
  • 9. M.J. Merchant, G.W. Grime, K.J. Kirkby, R.P. Webb, Nucl. Instrum. Methods Phys. Res. B 260, 8 (2007)
  • 10. S. Incerti, Q. Zhang, F. Andersson, P. Moretto, G.W. Grime, M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pouthier, H. Seznec, Nucl. Instrum. Methods Phys. Res. B 260, 20 (2007)
  • 11. B.E. Fischer, M. Heiß, M. Cholewa, Nucl. Instrum. Methods Phys. Res. B 210, 285 (2003)
  • 12. Enculescu, Z. Siwy, D. Dobrev, C. Trautmann, M.E. Toimil Molares, R. Neumann, K. Hjort, L. Westerberg, R. Spohr, Appl. Phys A 77, 751 (2003)
  • 13. T. Schenkel, A. Persaud, S.J. Park, J. Nilsson,J. Bokor, J.A. Liddle, R. Keller, D.H. Schneider, D.W. Cheng, D.E. Humphries, J. Appl. Phys. 94, 7017 (2003)
  • 14. M. Folkard, K.M. Prise, B. Vojnovic, S. Gilchrist, G. Schettino, O.V. Belyakov, A. Ozols, B.D. Michael, Nucl. Instrum. Methods Phys. Res. B 181, 426 (2001)
  • 15. H. Imaseki, T. Ishikawa, H. Iso, T. Konishi, N. Suya, T. Hamano, X. Wang, N. Yasuda, M. Yukawa, Nucl. Instrum. Methods Phys. Res. B 260, 81 (2007)
  • 16. F. Andersson, P. Barberet, S. Incerti, P. Moretto, Nucl. Instrum. Methods Phys. Res. B 266, 1653 (2008)
  • 17. K.J. Kirkby, G.W. Grime, R.P. Webb, N.F. Kirkby, M. Folkard, K. Prise, B. Vojnovic, Nucl. Instrum. Methods Phys. Res. B 260, 97 (2007)
  • 18. G.W. Grime, M.J. Merchant, W. Polak, V. Palitsin, R.P. Webb, K.J. Kirkby, Appl. Rad. Isotopes, in press
  • 19. J. Pallon, Acta Phys. Pol. A 115, 435 (2009)
  • 20. M.B.H. Breese, G.W. Grime, F. Watt, Ann. Rev. Nucl. Particle Sci. 42, 1 (1992)
  • 21. M. Cholewa, C. Dillon, P. Lay, D. Phillips, T. Talarico, B. Lai, Nucl. Instrum. Methods Phys. Res. B 181, 715 (2001)
  • 22. R. Ortega, G. Devès, B. Fayard, M. Salome, J. Susini, Nucl. Instrum. Methods Phys. Res. B 210, 325 (2003)
  • 23. M.B.H. Breese, G.W. Grime, F. Watt, D. Williams, Nucl. Instrum. Methods Phys. Res. B 77, 169 (1993)
  • 24. F. Watt, M.B.H. Breese, A.A. Bettiol, J.A. van Kan, Mater. Today 10, 20 (2007)
  • 25. F.E.H. Tay, J.A. van Kan, F. Watt, W.O. Choong, J. Micromechan. Microeng. 11, 27 (2001)
  • 26. F. Sun, D. Casse, J.A. van Kan, R. Ge, F. Watt, Tissue Eng. 10, 267 (2004)
  • 27. K. Ansari, J.A. van Kan, A.A. Bettiol, F. Watt, Appl. Phys. Lett. 85, 476 (2004)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv115n207kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.