Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 115 | 1 | 141-143

Article title

Coexistence of Ferromagnetism with Spin Triplet Superconductivity

Content

Title variants

Languages of publication

EN

Abstracts

EN
The experimental results for ZrZn_2, URhGe, and in some pressure ranges also for UGe_2, showed that the ferromagnetic superconductors are weak itinerant ferromagnets. Guided by these results we describe the phenomenon of coexistence between equal spin triplet pairing superconductivity and ferromagnetism using the extended Stoner model, which includes in Hamiltonian the on-site Coulomb interaction, U, and occupation dependent hopping integral. We use the Hartree-Fock approximation and the Green functions technique. In the Hartree-Fock approximation the on-site Coulomb interaction plays the role of the on-site exchange (Hund's) field. All inter-site interactions will have included the inter-site kinetic correlation, 〈c_{iσ}^{+}c_{jσ}〉, within the Hartree-Fock approximation. We introduce the pressure-dependence to the hopping integral. Numerical results are compared with experimental data for ZrZn_2. The kinetic correlation creates the superconductivity without help of negative values of the Coulomb interactions. The model can explain stimulation of triplet superconductivity by the weak itinerant ferromagnetism. This effect was observed experimentally in ZrZn_2. Numerical analysis also confirms the experimental effect of decrease in critical temperatures (Curie and superconducting) with increasing external pressure.

Keywords

EN

Contributors

author
  • Institute of Physics, Rzeszów University, al. Rejtana 16A, 35-959 Rzeszów, Poland
author
  • Institute of Physics, Rzeszów University, al. Rejtana 16A, 35-959 Rzeszów, Poland
author
  • Institute of Physics, Rzeszów University, al. Rejtana 16A, 35-959 Rzeszów, Poland

References

  • 1. D. Fay, J. Appel, Phys. Rev. B 22, 3173 (1980)
  • 2. B.J. Powell, J.F. Annett, B.L. Györffy, J. Phys. A 36, 9289 (2003)
  • 3. S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.W. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet, Nature 406, 587 (2000)
  • 4. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, C. Paulsen, Nature 413, 613 (2001)
  • 5. C. Pfleiderer, M. Uhlarz, S.M. Hayden, R. Vollmer, H.v. Löhneysen, N.R. Bernhoeft, G.G. Lonzarich, Nature 412 58, (2001)
  • 6. J. Mizia, G. Górski, Models of Itinerant Ordering in Crystals, 1st ed., Elsevier, London 2007
  • 7. I. Lo, S. Mazumdar, P.G. Mattocks, Phys. Rev. Lett. 62, 2555 (1989)
  • 8. L. Arrachea, A.A. Aligia, Physica C 289, 70 (1997)
  • 9. M. Uhlarz, C. Pfleiderer, S.M. Hayden, Phys. Rev. Lett. 93, 256404 (2004)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv115n1034kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.