Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 113 | 5 | 1385-1395

Article title

Positron Annilation Lifetime and Glass Transition Temperatures in CO_2 Sorption Polystyrene

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Positron annihilation lifetime spectroscopy was used to measure the free-volume size and distributions as a function of temperature in polystyrene with and without 400 psi CO_2 sorption. The transition temperatures in the polystyrene with CO_2 sorption obtained from ortho-positronium lifetimes were found to depend on the thermal cycles and a meta-stable state showing a negative thermal expansion coefficient was observed between 53°C and 82°C during the first heating up experiment. The observed T_g in polystyrene with, and without CO_2 sorption after annealing from ortho-positronium lifetimes were found to be 86°C and 91°C, which are 5°C higher, and 10°C lower than from the differential scanning calorimetry data, respectively. The observed free-volume variations are discussed in terms of hole expansion, creation, free-volume relaxation, plasticization, and hole filling in amorphous polymers.

Keywords

EN

Contributors

author
  • Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA
  • Center of Membrane Technology, Chung-Yuan Christian University, Chung-Li, Taiwan
author
  • Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA
author
  • Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA
author
  • Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA

References

  • 1. D.L. Tomasko, H. Li, D. Liu, X. Han, M. Wingert, L. James Lee, K.W. Koelling, Ind. Eng. Chem. Res. 42, 6431 (2003)
  • 2. W. Strauss, N.A. D'Souza, J. Cellular Plastics 40, 229 (2004)
  • 3. W.J. Koros, D.R. Paul, J. Polym. Sci., Part B, Polym. Phys. 16, 2171 (1976)
  • 4. J.S. Chiou, J.W. Barlow, D.R. Paul, J. Appl. Polym. Sci. 30, 2633 (1985)
  • 5. M.H. Cohen, D.J. Turnbull, J. Chem. Phys. 31, 1164 (1959)
  • 6. J.S. Vrentas, J.L. Duda, J. Polym. Sci., Part B, Polym. Phys. 15, 403 (1977)
  • 7. J.Y. Park, D.R. Paul, J. Membr. Sci. 125, 23 (1997)
  • 8. For example, see Y.C. Jean, Microchem. J. 42, 72 (1990)
  • 9. For example, see P.E. Mallon, in: Principles and Applications of Positron and Positronium Chemistry, Ed. Y.C. Jean, P.E. Mallon, D.M. Schrader, World Sci., Singapore 2003, p. 253
  • 10. S.J. Tao, J. Chem. Phys. 56, 5499 (1972)
  • 11. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)
  • 12. H. Nakanishi, S.J. Wang, Y.C. Jean, in: Positron Annihilation Studies of Fluids, Ed. S.C. Sharma, World Sci., Singapore 1988, p. 292
  • 13. Y. Ito, M.F.M. Mohamed, K. Tanaka, K. Okamoto, K.J. Lee, J. Radioanal. Nucl. Chem. 210, 211 (1996)
  • 14. X. Hong, Y.C. Jean, S. Yang, S.S. Jordon, W.J. Koros, Macromolecules 29, 7859 (1996)
  • 15. J.-P. Yuan, H. Cao, E.W. Hellmuth, Y.C. Jean, J. Polym. Sci., Part B, Polym. Phys. 36, 3049 (1998)
  • 16. J. Liu, Q. Deng, Y.C. Jean, Macromolecules 26, 7149 (1993)
  • 17. A. Uedono, T. Kawano, S. Tanigawa, M. Ban, M. Kyoto, T. Uozomi, J. Polym. Sci. Part B, Polym. Phys. 34, 2145 (1996)
  • 18. H.L. Li, Y. Ujihira, A. Nanasawa, J. Radioanal. Nucl. Chem. 210, 533 (1996)
  • 19. C.L. Wang, S.J. Wang, Polymer 38, 173 (1997)
  • 20. W.J. Davis, R.A. Pethrick, Polym. Int. 45, 395 (1985)
  • 21. K. Ito, Y. Ujihira, Polym. J. 30, 566 (1998)
  • 22. Z.L. Peng, B.G. Olson, J.D. McGervey, A.M. Jamieson, Polymer 40, 3033 (1999)
  • 23. J. Bohlen, R. Kirchheim, Macromolecules 34, 4210 (2001)
  • 24. M. Song, D.J. Hourston, G.G. Silva, J.G. Machado, J. Polym. Sci. Part B, Polym. Phys. 39, 1659 (2001)
  • 25. V.P. Shantarovich, T. Suzuki, C. He, V.A. Davankov, A.V. Pastukhov, M.P. Tsyurupa, K. Kondo, Y. Ito, Macromolecules 35, 9723 (2002)
  • 26. C. He, T. Suzuki, E. Hamada, H. Kobayashi, K. Kondo, V.P. Shantarovich, Y. Ito, Mater. Res. Innovations 7, 37 (2003)
  • 27. G. Dlubek, J. Pionteck, D. Kilburn, Macromol. Chem. Phys. 205, 500 (2004)
  • 28. D. Cangialosi, M. Wubbenhorst, H. Schut, A. van Veen, S.J. Picken, J. Chem. Phys. 122, 64702 (2005)
  • 29. G. Consolati, F. Quasso, R. Simha, B.G. Olson, J. Polym. Sci., Part B, Polym. Phys. 43, 2225 (2005)
  • 30. J. Zhang, H. Chen, Y. Li, R. Suzuki, T. Ohdaira, Y.C. Jean, J. Radiat. Phys. Chem. 76, 172 (2007)
  • 31. N. Djiourelov, C. Dauwe, C.A. Palacio, N. Laforest, C. Bas, Phys. Status Solidi C 1-4, 1002 (2007)
  • 32. Y. Honda, T. Shimada, M. Tashiro, N. Kimura, Y. Yashida, G. Isoyama, S. Tagawa, J. Radiat. Phys. Chem. 76, 169 (2007)
  • 33. Y. Yang D. Liu, Y. Xie, L. James Lee, D.L. Tomasko, Adv. Mater. 19, 251 (2007)
  • 34. R. Greiner, F.R. Schwartl, Rhod. Acta 23, 378 (1984)
  • 35. Physical Properties of Polymers Handbook, Ed. J.E. Mark, Am. Inst. Phys., Woodbury, NY 1996, p. 87
  • 36. M.D. Sefcik, J. Polym. Sci., Part B, Polym. Phys. 24, 958 (1986)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv113n516kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.