Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 112 | 1 | 29-40

Article title

Amplitude Modulation and Demodulation in Strain Dependent Diffusive Semiconductors

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In communication processes, amplitude modulation is very helpful to save power by using a single band transmission. Thus in this paper authors have explored the possibility of amplitude modulation as well as demodulation of an electromagnetic wave in a transversely magnetized electrostrictive semiconductor. The inclusion of carrier diffusion and phenomenological damping coefficient in the nonlinear laser-semiconductor plasma interaction adds a new dimension to the analysis present in this paper. This problem is analyzed in different wave number regimes over a wide range of cyclotron frequencies. It is found that the complete absorption of the waves takes place in all the possible wavelength regimes when the cyclotron frequency (ω_c) becomes exactly equal to (ν^2+ω_0^2)^{1/2} in absence of damping parameter. It has also been seen that diffusion of charge carriers modifies amplitude modulation and demodulation processes significantly. The damping parameter plays a very important role in deciding the parameter range and selecting the side band mode that will be modulated by the above-mentioned interaction.

Keywords

EN

Contributors

author
  • School of Studies in Physics, Vikram University, Ujjain (M.P.), India
author
  • School of Studies in Physics, Vikram University, Ujjain (M.P.), India

References

  • 1. R. Muller, Phys. Status Solidi B, 150, 587, 1988
  • 2. A. Kumar, P.K. Sen, Nonlinear Opt., 28, 155, 2001
  • 3. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y. Hwang, J.N. Baillargeon, D.L. Sivco, A.Y. Cho, E.A. Whittaker, H.C. Liu, Appl. Phys. Lett., 79, 2526, 2001
  • 4. M.S. Sodha, C.J. Palumbo, Can. J. Phys., 42, 1635, 1964
  • 5. A. Neogi, J. Appl. Phys., 77, 191, 1995
  • 6. Giriraj Sharma, S. Ghosh, Eur. Phys. J. D, 11, 301, 2000
  • 7. Pradeep K. Gupta, Pranay K. Sen, Nonlinear Opt., 26, 361, 2001
  • 8. P.K. Gupta, P.K. Sen, J. Non. Opt. Phys. Mat., 10, 265, 2001
  • 9. A. Sen, P.K. Kaw, J. Phys. D, 6, 2091, 1973
  • 10. G.P. Agarwal, Nonlinear Fiber Optics, Academic Press, Boston 1984, Sect. 5
  • 11. D.R. Anderson, Phys. Rev. A, 37, 189, 1988
  • 12. A. Neogi, K.P. Maheshwari, M.S. Sodha, J. Opt. Soc. Am. B, 11, 597, 1994
  • 13. P. Vartharajah, J.V. Moloney, A.C. Newell, E.M. Wright, J. Opt. Soc. Am. B, 10, 46, 1993
  • 14. P. Vartharajah, A.C. Newell, J.V. Moloney, A.B. Aceves, Phys. Rev. A, 42, 1767, 1990
  • 15. A. Yariv, Quantum Electronics, 3rd ed., Wiley, New York 1988, p. 477
  • 16. J. Stratton, Electromagnetic Theory, McGraw Hill, New York 1941, p. 151
  • 17. L.D. Landau, E.M. Liftshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford 1963, p. 337
  • 18. C.N. Lashmore-Davies, Phys. Fluids, 19, 587, 1976

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv112n104kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.