Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2002 | 102 | 4-5 | 541-554

Article title

Interface Engineering in Heteroepitaxy

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report the importance of interface engineering in heteroepitaxy with examples of plasma-assisted molecular beam epitaxial ZnO growths on (0001) sapphire substrates and on (0001) GaN/sapphire templates, whose interfaces are engineered to improve and to control properties of ZnO films. The growth of rocksalt structure MgO buffer on Al_2O_3 (0001) is developed for ZnO epitaxy. By employing the MgO buffer layer, the formation of 30^o rotated mixed domains is prohibited and two-dimensional layer-by-layer growth of ZnO on sapphire substrate is achieved. High-resolution X-ray diffraction reveals the superior improvement in a crystal quality of ZnO films with an MgO buffer. Polarity of wurtzite structure ZnO films on Ga-polar GaN/sapphire templates is controlled by changing interface structures. By forming a single crystalline, monoclinic Ga_2O_3 interfacial layer between GaN and ZnO through O-plasma pre-exposure on the Ga-polar GaN surface, O-polar ZnO films are grown. By forming the ZnO/GaN heterointerface without an interfacial layer through the Zn pre-exposure on the Ga-polar GaN surface, Zn-polar ZnO films are grown.

Keywords

Contributors

author
  • Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
author
  • Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
author
  • Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
author
  • Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

References

  • 1. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett., 70, 2230, 1997
  • 2. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohotomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett., 72, 3270, 1998
  • 3. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, T. Goto, Appl. Phys. Lett., 73, 1038, 1998
  • 4. H. Wenisch, V. Kirchner, S.K. Hong, Y.F. Chen, H.J. Ko, T. Yao, J. Crystal Growth, 227-228, 944, 2001
  • 5. Y. Chen, D.M. Bagnall, H.J. Ko, K.T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys., 84, 3912, 1998
  • 6. S.C. Jain, M. Willander, J. Narayan, R.V. Overstraeten, J. Appl. Phys., 87, 965, 2000
  • 7. Y. Chen, H.J. Ko, S.K. Hong, T. Yao, Appl. Phys. Lett., 76, 559, 00
  • 8. Y. Chen, S.K. Hong, H.J. Ko, V. Kirshner, H. Wenisch, T. Yao, K. Inaba, Y. Segawa, Appl. Phys. Lett., 78, 3352, 2000
  • 9. S.K. Hong, T. Hanada, H.J. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, M. Shinohara, Appl. Phys. Lett., 77, 3571, 2000
  • 10. S.K. Hong, T. Hanada, H.J. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, M. Shinohara, K. Saitoh, M. Terauchi, Phys. Rev. B, 65, 115331, 2002
  • 11. S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Onneby, S.E. Mohney, R.J. Molnar, Appl. Phys. Lett., 70, 2156, 1997
  • 12. S.D. Wolter, S.E. Mohney, H. Venugopalan, A.E. Wickenden, D.D. Koleske, J. Electrochem. Soc., 145, 629, 1998
  • 13. A. Ohtake, S. Miwa, L.H. Kuo, T. Yasuda, K. Kimura, C. Jin, T. Yao, J. Crystal Growth, 164/185, 163, 1998
  • 14. S.K. Hong, H.J. Ko, Y. Chen, T. Hanada, T. Yao, J. Vac. Sci. Technol. B, 18, 2313, 2000
  • 15. T. Zheleva, K. Jagannadham, J. Narayan, J. Appl. Phys., 75, 860, 1994
  • 16. V. Ramachandran, R.M. Feenstra, W.L. Samey, L. Salamanca-Riba, J.E. Northrup, L.T. Romano, D.W. Greve, Appl. Phys. Lett., 75, 808, 1999
  • 17. L.T. Romano, J.E. Northrup, A.J. Ptak, T.H. Myers, Appl. Phys. Lett., 77, 2479, 2000

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv102n422kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.