Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 817-824

Article title

Barley primary microRNA expression pattern is affected by soil water availability

Content

Title variants

Languages of publication

EN

Abstracts

EN
MicroRNAs are short molecules of 21-24 nt in length. They are present in all eukaryotic organisms and regulate gene expression by guiding posttranscriptional silencing of mRNAs. In plants, they are key players in signal transduction, growth and development, and in response to abiotic and biotic stresses. Barley (Hordeum vulgare) is an economically important monocotyledonous crop plant. Drought is the world's main cause of loss in cereal production. We have constructed a high-throughput Real-Time RT-qPCR platform for parallel determination of 159 barley primary microRNAs' levels. The platform was tested for two drought-and-rehydration-treated barley genotypes (Rolap and Sebastian). We have determined changes in the expression of primary microRNAs responding to mild drought, severe drought, and rehydration. Based on the results obtained, we conclude that alteration in the primary microRNA expression is relative to the stress's intensity. Mild drought and rehydration mostly decrease the pri-miRNA levels in both of the tested genotypes. Severe drought mainly induces the primary microRNA expression. The main difference between the genotypes tested was a much-stronger induction of pri-miRNAs in Rolap encountering severe drought. The primary microRNAs respond dynamically to mild drought, severe drought, and rehydration treatments. We propose that some of the individual pri-miRNAs could be used as drought stress or rehydration markers. The usage of the platform in biotechnology is also postulated.

Keywords

Year

Volume

63

Issue

4

Pages

817-824

Physical description

Dates

published
2016
received
2016-06-03
revised
2016-06-30
accepted
2016-07-20
(unknown)
2016-10-21

Contributors

  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
author
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
  • Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
  • Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
  • Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland

References

  • Alaba S, Piszczalka P, Pietrykowska H, Pacak AM, Sierocka I, Nuc PW, Singh K, Plewka P, Sulkowska A, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z (2015) The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytol 206: 352-367. https://doi.org/10.1111/nph.13220.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15: 2730-2741. https://doi.org/10.1105/tpc.016238.
  • Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6: 410. https://doi.org/10.3389/fpls.2015.00410.
  • Bartel DP (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116: 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5.
  • Bielewicz D, Dolata J, Zielezinski A, Alaba S, Szarzynska B, Szczesniak MW, Jarmolowski J, Szweykowska-Kulinska Z, Karlowski W (2012) mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acid Res 40 (Database issue): D191-D197. https://doi.org/10.1093/nar/gkr878.
  • Bielewicz D, Kalak M, Kalyna M, Windels D, Barta A, Vazquez F, Szweykowska-Kulinska Z, Jarmolowski A (2013) Introns of plant pri-miRNAs enhance miRNA biogenesis. EMBO Rep 14: 622-628. https://doi.org/10.1038/embor.2013.62.
  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. The Plant Journal 54: 876-887. https://doi.org/10.1111/j.1365-313X.2008.03448.x.
  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 1185-1190. https://doi.org/10.1126/science.1159151.
  • Brown JW, Marshall DF, Echeverria M (2008) Intronic noncoding RNAs and splicing. Trends Plant Sci 13: 335-342. https://doi.org/10.1016/j.tplants.2008.04.010.
  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642-655. https://doi.org/10.1016/j.cell.2009.01.035.
  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303: 2022-2025. https://doi.org/10.1126/science.1088060.
  • Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52: 946-951. https://doi.org/10.1111/j.1744-7909.2010.00987.x.
  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: A stand-alone BLAST web server for flexible queries of multiple databases and user's datasets. Bioinformatics 23: 2334-2336. https://doi.org/10.1093/bioinformatics/btm331.
  • Devaux P, Adamski T, Surma M (1992) Inheritance of seed set in crosses of spring barley and Hordeum bulbosum L. Crop Sci 32: 269-271. https://doi.org/10.2135/cropsci1992. 0011183X003200010054x
  • Dolata J, Bajczyk M, Bielewicz D, Niedojadlo K, Niedojadlo J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE 1 in miRNA biogenesis at the transcriptional and post-transcriptional levels. Plant Physiol 172: 297-312.
  • Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15: 2219-2235. https://doi.org/10.1261/rna.1646909.
  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13: 2-13. https://doi.org/10.1111/pbi.12220.
  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures (The Vienna RNA Package). Monatsh Chem 125: 167-188. https://doi.org/10. 1007/BF00818163
  • International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491: 711-716. https://doi.org/10.1038/nature11543.
  • Jia F, and Rock CD (2013) MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis. Plant Mol Biol 81: 447-460. https://doi.org/10.1007/s11103-013-0015-6.
  • Jian X, Zhang L, Li G, Zhang L, Wang X, Cao X, Fang X, Chen F (2010) Identification of novel stress regulated microRNAs from Oryza sativa L. Genomics 95: 47-55. https://doi.org/10.1016/j.ygeno.2009.08.017.
  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10: 493-507. https://doi.org/10.1007/s10142-010-0181-4.
  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286-298. https://doi.org/10.1093/bib/bbn013.
  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819: 137-148. https://doi.org/10.1016/j.bbagrm.2011.05.001.
  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42: D68-D73. https://doi.org/10.1093/nar/gkt1181.
  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmołowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and Rother sRNAs of plants in their changing environment. J Plant Physiol 169: 1664-1672. https://doi.org/10.1016/j.jplph.2012.03.009.
  • Kruszka K, Pacak A, Swida-Barteczka A, Stefaniak AK, Kaja E, Sierocka I, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2013) Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genomics 14: 34. https://doi.org/10.1186/1471-2164-14-34.
  • Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65: 6123-6235. https://doi.org/10.1093/jxb/eru353.
  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12: 206-212. https://doi.org/10.1261/rna.2146906.
  • Lacombe S, Nagasaki H, Santi C, Duval D, Piegu B, Bangratz M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C, Panaud O, Karlowski WM, Sato Y, Echeverria M (2008) Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC Plant Biol 8: 123. https://doi.org/10.1186/1471-2229-8-123.
  • Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Ratsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and micro RNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105: 8795-8800. https://doi.org/10.1073/pnas.0802493105.
  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051-4060. https://doi.org/10.1038/sj.emboj.7600385.
  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21: 4663-4670. https://doi.org/10.1093/emboj/cdf476.
  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell 20: 2238-2251. https://doi.org/10.1105/tpc.108.059444.
  • Li YP, Ye W, Wang M, Yan XD (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39: 31-46. https://doi.org/10. 3354/cr00797
  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14: 836-843. https://doi.org/10.1261/rna.895308.
  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297: 2053-2056. https://doi.org/10.1126/science.1076311.
  • Lv S, Nie X, Wang L, Du X, Biradar SS, Jia X, Weining S (2012) Identification and characterization of MicroRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci 13: 2973-2984. https://doi.org/10.3390/ijms13032973.
  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J 23: 3356-3364. https://doi.org/10.1038/sj.emboj.7600340.
  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713. https://doi.org/10.1038/35079635.
  • Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou AG (2006) MicroRNA promoter element discovery in Arabidopsis. RNA 12: 1612-1619. https://doi.org/10.1261/rna.130506.
  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by miRNAs. Nature 425: 257-263. https://doi.org/10.1038/nature01958.
  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102: 3691-3696. https://doi.org/10.1073/pnas.0405570102.
  • Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M, Jarmolowski A, Szweykowska-Kulinska Z (2013) Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol J 11: 459-469. https://doi.org/10.1111/pbi.12032.
  • Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JW, Jarmolowski A (2010) Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 38: 265-278. https://doi.org/10.1093/nar/gkp869.
  • Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, Simpson CG, Szweykowska-Kulinska Z, Brown JW, Jarmolowski A (2014) The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 42: 1224-1244. https://doi.org/10.1093/nar/gkt894.
  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20: 3407-3425. https://doi.org/10.1101/gad.1476406.
  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339: 62-66. https://doi.org/10.1016/S0304-3940(02)01423-4.
  • Rapacz M, Stepien A, Skorupa K (2012) Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age. Acta Physiol Plant 34: 1723-1733. https://doi.org/10. 1007/s11738-012-0967-1
  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25: 2383-2399. https://doi.org/10.1105/tpc.113.113159.
  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16: 457-465. https://doi.org/10.1038/sj.cr.7310057.
  • Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12: 129. https://doi.org/10.1186/1471-2164-12-129.
  • SEQC/MAQC-III Consortium. Su Z, Łabaj PP, Li S, Thierry-Mieg J, Thierry-Mieg D, Shi W, Wang C, Schroth GP, Setterquist RA, Thompson JF, Jones WD, Xiao W, Xu W, Jensen RV, Kelly R, Xu J, Conesa A, Furlanello C, Gao H, Hong H, Jafari N, Letovsky S, Liao Y, Lu F, Oakeley EJ, Peng Z, Praul CA, Santoyo-Lopez J, Scherer A, Shi T, Smyth GK, Staedtler F, Sykacek P, Tan XX, Thompson EA, Vandesompele J, Wang MD, Wang J, Wolfinger RD, Zavadil J, Auerbach SS, Bao W, Binder H, Blomquist T, Brilliant MH, Bushel PR, Cai W, Catalano JG, Chang CW, Chen T, Chen G, Chen R, Chierici M, Chu TM, Clevert DA, Deng Y, Derti A, Devanarayan V, Dong Z, Dopazo J, Du T, Fang H, Fang Y, Fasold M, Fernandez A, Fischer M, Furió-Tari P, Fuscoe JC, Caimet F, Gaj S, Gandara J, Gao H, Ge W, Gondo Y, Gong B, Gong M, Gong Z, Green B, Guo C, Guo L, Guo LW, Hadfield J, Hellemans J, Hochreiter S, Jia M, Jian M, Johnson CD, Kay S, Kleinjans J, Lababidi S, Levy S, Li QZ, Li L, Li L, Li P, Li Y, Li H, Li J, Li S, Lin SM, López FJ, Lu X, Luo H, Ma X, Meehan J, Megherbi DB, Mei N, Mu B, Ning B, Pandey A, Pérez-Florido J, Perkins RG, Peters R, Phan JH, Pirooznia M, Qian F, Qing T, Rainbow L, Rocca-Serra P, Sambourg L, Sansone SA, Schwartz S, Shah R, Shen J, Smith TM, Stegle O, Stralis-Pavese N, Stupka E, Suzuki Y, Szkotnicki LT, Tinning M, Tu (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32: 903-914. https://doi.org/10.1038/nbt.2957.
  • Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA 104: 5437-5442. https://doi.org/10.1073/pnas.0701061104.
  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18: 2051-2065. https://doi.org/10.1105/tpc.106.041673.
  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16: 2001-2019. https://doi.org/10.1105/tpc.104.022830.
  • Szarzynska B, Sobkowiak L, Jarmolowski A, Szweykowska-Kulinska Z (2011) Gene structures and processing of plant pri-miRNAs. Res Adv in Nucleic Acids Res 1: 1-12.
  • Szarzyńska B, Sobkowiak Ł, Pant BD, Balazadeh S, Scheible WR, Mueller-Roeber B, Jarmołowski A, Szweykowska-Kulińska Z (2009) Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res 37: 3083-3093. https://doi.org/10.1093/nar/gkp189.
  • Szwed M, Karg G, Pińskwar I, Radziejewski M, GraczykD, Kędziora A, Kundzeiwcz ZW (2010) Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat Hazards Earth Syst Sci 10: 1725-1737. https://doi.org/10. 5194/nhess-10-1725-2010
  • Szweykowska-Kulińska Z, Jarmołowski A, Vazquez F (2013) The crosstalk between plant microRNA biogenesis factors and the spliceosome. Plant Signal Behav 8: e26955. https://doi.org/10.4161/psb.26955.
  • Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T (2006) Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. Plant J 47: 25-37. doi: 10.1111/j.1365-313X.2006.02768.x.
  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: W71-W74. https://doi.org/10.1093/nar/gkm306.
  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18: 1187-1197. https://doi.org/10.1101/gad.1201404.
  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133: 4211-4218. https://doi.org/10.1242/dev.02602.
  • Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC (2012) Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 48: 521-531. https://doi.org/10.1016/j.molcel.2012.08.032.
  • Yang L, Liu Z, Lu F, Dong A, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47: 841-850. https://doi.org/10.1111/j.1365-313X.2006.02835.x.
  • Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 20 OH of the 30 terminal nucleotide. Nucleic Acids Res 34: 667-675. https://doi.org/10.1093/nar/gkj474.
  • Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105: 10073-10078. https://doi.org/10.1073/pnas.0804218105.
  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307: 932-935. https://doi.org/10.1126/science.1107130.
  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14: 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10: 449. https://doi.org/10.1186/1471-2164-10-449.
  • Zhang W, Gao S, Zhou X, Xia J, Chellappan P, Zhou X, Zhang X, Jin H (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11: R81. https://doi.org/10.1186/gb-2010-11-8-r81.
  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33: 403-409. https://doi.org/10.1007/s10529-010-0436-0.
  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10: 29. https://doi.org/10.1186/1471-2199-10-29.
  • Zhao X, Zhang H, Li L (2013) Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 101: 187-194. https://doi.org/10.1016/j.ygeno.2012.12.004.
  • Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X, Xie C (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6: 23890. https://doi.org/10.1038/srep23890.
  • Zielezinski A, Dolata J, Alaba S, Kruszka K, Pacak A, Swida-Barteczka A, Knop K, Stepien A, Bielewicz D, Pietrykowska H, Sierocka I, Sobkowiak L, Lakomiak A, Jarmolowski A, Szweykowska-Kulinska Z, Karlowski WM (2015) mirEX 2.0 - an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 15: 144. https://doi.org/10.1186/s12870-015-0533-2.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p817kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.