Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 765-771

Article title

Searching for anti-glioma activity. Ribonucleoside analogues with modifications in nucleobase and sugar moieties

Content

Title variants

Languages of publication

EN

Abstracts

EN
Several ribonucleoside analogues with modifications in the nucleobase and sugar moiety have been screened for anti-glioma activity in the T98G glioma cell line using cervical (HeLa) cell line as reference human malignant cells, and lung fibroblast (MCR-5) cell line as non-cancerous reference cells. Among the investigated compounds, ribonucleosides containing 6-chloropurine (3), 7-guanine (5) and a pyrrolopyrimidine (18) as nucleobases, show promising anti-glioma activity with good selectivity indices, and can be considered as lead structures for further anti-cancer studies.

Year

Volume

63

Issue

4

Pages

765-771

Physical description

Dates

published
2016
received
2016-05-30
revised
2016-06-26
accepted
2016-07-07
(unknown)
2016-11-10

Contributors

  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
author
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

  • Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, Zadeh G (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz) 61: 25-41. https://doi.org/10.1007/s00005-012-0203-0.
  • Badisa RB, Darling-Reed SF, Joseph P, Cooperwood JS, Latinwo LM, Goodman CB (2009) Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Research 29: 2993-2996. PMID: 19661306.
  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108: 238-263. https://doi.org/10.1021/cr0682195.
  • Benzaria S, Bardiot D, Bouisset T, Counor C, Rabeson C, Pierra C, Storer R, Loi AG, Cadeddu A, Mura M, Musiu C, Liuzzi M, Loddo R, Bergelson S, Bichko V, Bridges E, Cretton-Scott E, Mao J, Sommadossi JP, Seifer M, Standring D, Tausek M, Gosselin G, La Colla P (2007) 2'-C-Methyl branched pyrimidine ribonucleoside analogues: potent inhibitors of RNA virus replication. Antivir Chem Chemother 18: 225-242. PMID: 17907380.
  • Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108: 11-27. https://doi.org/10.1007/s11060-011-0793-0.
  • Boryski J (1995) Transglycosylation of β-D-Ribofuranosylindazoles. Nucleosides Nucleotides Nucleic Acids 14: 77-89. https://doi.org/10. 1080/1525-7779508014654
  • Boryski J (1998) A Novel approach to synthesis of 2'-deoxy-β-d-ribonucleosedes via transglycosylation of 6-oxopurine ribonucleosides. Nucleosides Nucleotides Nucleic Acids 17: 1547-1556. https://doi.org/10. 1080/07328319808004685
  • Boryski J (2008) Reactions of transglycosylation in the nucleoside chemistry. Curr Org Chem 12: 309-325. https://doi.org/10. 2174/138527208783743723
  • Carangio A, McGuigan C, Andrei G, Snoeck R, De Clercq E, Balzarini J (2001) Bicyclic nucleoside inhibitors of varicella-zoster virus (VZV): Pd-catalysed synthesis of 5-aryl derivatives and their biological evaluation. Antivir Chem Chemother 12: 187-197. PMID: 12959327.
  • Catuogno S, Esposito CL, Quintavalle C, Condorelli G, de Franciscis V, Cerchia L (2012) Nucleic acids in human glioma treatment: innovative approaches and recent results. J Signal Transduct 2012: 735135. https://doi.org/10.1155/2012/735135.
  • Chen BJ, Wu YL, Tanaka Y, Zhang W (2014) Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci 10: 1084-1096. https://doi.org/10.7150/ijbs.10190.
  • Christman JK (2001) 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21: 5483-5495. https://doi.org/10.1038/sj.onc.
  • Diez-Torrubia A, Balzarini J, Andrei G, Snoeck R, De Meester I, Camarasa MJ, Velazquez S (2011) Dipeptidyl peptidase IV dependent water-soluble prodrugs of highly lipophilic bicyclic nucleoside analogues. J Med Chem 54: 1927-1942. https://doi.org/10.1021/jm101624e.
  • Felczak K, Drabikowska AK, Vilpo JA, Kulikowski T, Shugar D (1996) 6-Substituted and 5,6-disubstituted derivatives of uridine: stereoselective synthesis, interaction with uridine phosphorylase, and in vitro antitumor activity. J Med Chem 39: 1720-1728. https://doi.org/10.1021/jm950675q.
  • Fogt J, Januszczyk P, Framski G, Onishi T, Izawa K, De Clercq E, Neyts J, Boryski J (2008) Synthesis and antiviral activity of novel derivatives of 2'-beta-C-methylcytidine. Nucleic Acids Symp Ser (Oxf) 52: 605-606. https://doi.org/10.1093/nass/nrn306.
  • Framski G, Gdaniec Z, Gdaniec M, Boryski J (2006) A reinvestigated mechanism of ribosylation of adenine under silylating conditions. Tetrahedron 62: 10123-10129. https://doi.org/10.1016/j.tet.2006.08. 046
  • Gallego O (2015) Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 22: e273-281. https://doi.org/10.3747/co.22.2436.
  • Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102: 4472-4478. https://doi.org/10.1182/blood-2002-11-3624.
  • Issa JP, Kantarjian HM, Kirkpatrick P (2005) Azacitidine. Nat Rev Drug Discov 4: 275-276. https://doi.org/10.1038/nrd1698.
  • Jahnz-Wechmann Z, Framski G, Januszczyk P, Boryski J (2015) Bioactive fused heterocycles: Nucleoside analogs with an additional ring. Eur J Med Chem 97: 388-396. https://doi.org/10.1016/j.ejmech.2014.12.026.
  • Januszczyk P, Fogt J, Boryski J, Izawa K, Onishi T, Neyts J, De Clercq E (2009) Synthesis and antiviral evaluation of 2'-C-methyl analogues of 5-alkynyl- and 6-alkylfurano- and pyrrolo[2,3-d]pyrimidine ribonucleosides. Nucleosides Nucleotides Nucleic Acids 28: 713-723. https://doi.org/10.1080/15257770903128870.
  • Khaled A, Ivannikova T, Auge C (2004) Synthesis of unnatural sugar nucleotides and their evaluation as donor substrates in glycosyltransferase-catalyzed reactions. Carbohydr Res 339: 2641-2649. https://doi.org/10.1016/j.carres.2004.09.002.
  • Koh YH, Shim JH, Girardet JL, Hong Z (2007) Design and evaluation of a potential mutagen for Hepatitis C virus. Bioorg Med Chem Lett 17: 5261-5264. https://doi.org/10.1016/j.bmcl.2007.03.091.
  • Lawson HC, Sampath P, Bohan E, Park MC, Hussain N, Olivi A, Weingart J, Kleinberg L, Brem H (2007) Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 83: 61-70. https://doi.org/10.1007/s11060-006-9303-1.
  • McGuigan C, Brancale A, Barucki H, Srinivasan S, Jones G, Pathirana R, Carangio A, Blewett S, Luoni G, Bidet O, Jukes A, Jarvis C, Andrei G, Snoeck R, De Clercq E, Balzarini J (2001) Furano pyrimidines as novel potent and selective anti-VZV agents. Antivir Chem Chemother 12: 77-89. PMID: 11527045.
  • McGuigan C, Hinsinger K, Farleigh L, Pathirana RN, Bugert JJ (2013) Novel antiviral activity of l-dideoxy bicyclic nucleoside analogues versus vaccinia and measles viruses in vitro. J Med Chem 56: 1311-1322. https://doi.org/10.1021/jm301778x.
  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100: 31-48. https://doi.org/10.1016/s0163-7258(03)00084-6.
  • Montgomery JA, Hewson K (1968) Analogs of 6-Methyl-9-β-ribofuranosylpurine. J Med Chem 11: 48-52. https://doi.org/10.1021/jm00307a010.
  • Neidle S, Thurston DE (2005) Chemical approaches to the discovery and development of cancer therapies. Nat Rev Cancer 5: 285-296. https://doi.org/10.1038/nrc1587.
  • Piwecka M, Rolle K, Wyszko E, Zukiel R, Nowak S, Barciszewska MZ, Barciszewski J (2011) Nucleic Acid-based Technologies in Therapy of Malignant Gliomas. Curr Pharm Biotechnol 12: 1805-1822. https://doi.org/10.1016/j.molonc.2015.03.007.
  • Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 17: 1603-1615. https://doi.org/10.1158/1078-0432.CCR-10-2563.
  • Radi M, Schenone S, Botta M (2009) Recent highlights in the synthesis of highly functionalized pyrimidines. Org Biomol Chem 7: 2841-2847. https://doi.org/10.1039/b906445a.
  • Rolle K, Nowak S, Wyszko E, Nowak M, Zukiel R, Piestrzeniewicz R, Gawronska I, Barciszewska MZ, Barciszewski J (2010) Promising human brain tumors therapy with interference RNA intervention (iRNAi). Cancer Biol Ther 9: 396-406. PMID: 20118657.
  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 352: 987-996. https://doi.org/10.1056/NEJMoa043330.
  • Szymanska-Michalak A, Wawrzyniak D, Framski G, Kujda M, Zgola P, Stawinski J, Barciszewski J, Boryski J, Kraszewski A (2016) New 3'-O-aromatic acyl-5-fluoro-2'-deoxyuridine derivatives as potential anticancer agents. Eur J Med Chem 115: 41-52. https://doi.org/10.1016/j.ejmech.2016.03.010.
  • Tolstikov GA, Mustafin AG, Gataullin RR, Spirikhin LV, Suitanova VS, Abdrakhmanov LB (1993) New type of interaction of 5-iodopyrimidine nucleosides with alkynes. Russ Chem Bull 42: 563-598. https://doi.org/10. 1007/BF00698454
  • Vorbrüggen H, Bennua B (1978) New Simplified Nucleoside Synthesis. Tetrahedron Lett 1339-1342. https://doi.org/10. 1016/0040-4039(78)80123-3
  • Nucleoside Analogues: Chemistry, Biology, and Medical Applications (1979) Walker RT, De Clerq E, Eckstein F, eds. Plenum Press, New York, New York.
  • Walton E, Jenkins SR, Nutt RF, Holly FW (1969) Branched-chain sugar nucleosides. v. synthesis and antiviral properties of several branched-chain sugar nucleosides. J Med Chem 12: 306-309. https://doi.org/10.1021/jm00302a025.
  • Wu R, Smidansky ED, Oh HS, Takhampunya R, Padmanabhan R, Cameron CE, Peterson BR (2010) Synthesis of a 6-methyl-7-deaza analogue of adenosine that potently inhibits replication of polio and dengue viruses. J Med Chem 53: 7958-7966. https://doi.org/10.1021/jm100593s.
  • Xavier CP, Lima CF, Rohde M, Pereira-Wilson C (2011) Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother Pharmacol 68: 1449-1457. https://doi.org/10.1007/s00280-011-1641-9.
  • Xu LW, Chow KK, Lim M, Li G (2014) Current vaccine trials in glioblastoma: a review. J Immunol Res 2014: 796856. https://doi.org/10.1155/2014/796856.
  • Yang MY, Zetler PM, Prins RP, Khan-Farooqi H, Liau LM (2006) Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev Neurother 6: 1481-1494. https://doi.org/10.1586/14737175.6.10.1481.
  • Zhang X, Zhang W, Cao WD, Cheng G, Zhang YQ (2012) Glioblastoma multiforme: Molecular characterization and current treatment strategy (Review). Exp Ther Med 3: 9-14. https://doi.org/10.3892/etm.2011.367.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p765kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.