Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 759-764

Article title

Silencing of genes responsible for polyQ diseases using chemically modified single-stranded siRNAs

Content

Title variants

Languages of publication

EN

Abstracts

EN
Polyglutamine (polyQ) diseases comprise a group of nine genetic disorders that are caused by the expansion of the CAG triplet repeat, which encodes glutamine, in unrelated single genes. Various oligonucleotide (ON)-based therapeutic approaches have been considered for polyQ diseases. The very attractive CAG repeat-targeting strategy offers selective silencing of the mutant allele by directly targeting the mutation site. CAG repeat-targeting miRNA-like siRNAs have been shown to specifically inhibit the mutant gene expression, and their characteristic feature is the formation of mismatches in their interactions with the target site. Here, we designed novel single-stranded siRNAs that contain base substitutions and chemical modifications, in order to develop improved therapeutic tools with universal properties for several polyQ diseases. We tested these ONs in cellular models of Huntington's disease (HD), spinocerebellar ataxia type 3 (SCA3) and dentatorubral-pallidoluysian atrophy (DRPLA). Selected siRNAs caused the efficient and selective downregulation of the mutant huntingtin, ataxin-3 and atrophin-1 levels in cultured human fibroblasts. We also prove the efficiency of novel ONs, with chemical modification pattern mainly containing 2'-fluoro (2'F), in HD mouse striatal cells.

Year

Volume

63

Issue

4

Pages

759-764

Physical description

Dates

published
2016
received
2016-05-30
revised
2016-06-28
accepted
2016-07-05
(unknown)
2016-10-21

Contributors

  • Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

  • Aiba Y, Hu J, Liu J, Xiang Q, Martinez C, Corey DR (2013) Allele-selective inhibition of huntingtin and ataxin-3 expression by RNA duplexes containing unlocked nucleic acid (UNA) substitutions. Biochemistry 52: 9329-9338. https://doi.org/10.1021/bi4014209.
  • Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31: 589-595. https://doi.org/10.1093/nar/gkg147.
  • Bennett CF, Swayze EE. (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50: 259-293. https://doi.org/10.1146/annurev.pharmtox.010909.105654.
  • Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, Babu BR, Højland T, Abramov M, Van Aerschot A, Odadzic D, Smicius R, Haas J, Andree C, Barman J, Wenska M, Srivastava P, Zhou C, Honcharenko D, Hess S, Müller E, Bobkov GV, Mikhailov SN, Fava E, Meyer TF, Chattopadhyaya J, Zerial M, Engels JW, Herdewijn P, Wengel J, Kjems J (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 37: 2867-2881. https://doi.org/10.1093/nar/gkp106.
  • Chorn G, Klein-McDowell M, Zhao L, Saunders MA, Flanagan WM, Willingham AT, Lim LP (2012) Single-stranded microRNA mimics. RNA 18: 1796-1804. https://doi.org/10.1261/rna.031278.111.
  • DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG, Manoharan M, Sah DW, Zamore PD, Aronin N (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 104: 17204-17209.
  • Dua P, Yoo JW, Kim S, Lee DK (2011) Modified siRNA structure with a single nucleotide bulge overcomes conventional siRNA-mediated off-target silencing. Mol Ther 19: 1676-1687. https://doi.org/10.1038/mt.2011.109.
  • Engels JW (2013) Gene silencing by chemically modified siRNAs. N Biotechnol 30: 302-307. https://doi.org/10.1016/j.nbt.2012.07.002.
  • Evers MM, Toonen LJ, van Roon-Mom WM (2013) Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 49: 1513-1531. https://doi.org/10.1007/s12035-013-8596-2.
  • Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ (2014) Polyglutamine (polyQ) diseases: genetics to treatments. Cell Transplant 23: 441-458. https://doi.org/10.3727/096368914X678454.
  • Fiszer A, Krzyzosiak WJ (2013) RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J Mol Med (Berl) 91: 683-691. https://doi.org/10.1007/s00109-013-1016-2.
  • Fiszer A, Krzyzosiak WJ (2014) Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 42: 6787-810. https://doi.org/10.1093/nar/gku385.
  • Fiszer A, Mykowska A, Krzyzosiak WJ (2011) Inhibition of mutant huntingtin expression by RNA duplex targeting expanded CAG repeats. Nucleic Acids Res 39: 5578-5585. https://doi.org/10.1093/nar/gkr156.
  • Fiszer A, Olejniczak M, Galka-Marciniak P, Mykowska A, Krzyzosiak WJ (2013) Self-duplexing CUG repeats selectively inhibit mutant huntingtin expression. Nucleic Acids Res 41: 10426-10437. https://doi.org/10.1093/nar/gkt825.
  • Fiszer A, Olejniczak M, Switonski PM, Wroblewska JP, Wisniewska-Kruk J, Mykowska A, Krzyzosiak WJ (2012) An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases. BMC Mol Biol 13: 6. https://doi.org/10.1186/1471-2199-13-6.
  • Haringsma HJ, Li JJ, Soriano F, Kenski DM, Flanagan WM, Willingham AT (2012) mRNA knockdown by single strand RNA is improved by chemical modifications. Nucleic Acids Res 40: 4125-4136. https://doi.org/10.1093/nar/gkr1301.
  • Holen T, Amarzguioui M, Babaie E, Prydz H (2003) Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res 31: 2401-2407. https://doi.org/10.1093/nar/gkg338.
  • Hossbach M, Gruber J, Osborn M, Weber K, Tuschl T (2006) Gene silencing with siRNA duplexes composed of target-mRNA-complementary and partially palindromic or partially complementary single-stranded siRNAs. RNA Biol 3: 82-89.
  • Hu J, Gagnon KT, Liu J, Watts JK, Syeda-Nawaz J, Bennett CF, Swayze EE, Randolph J, Chattopadhyaya J, Corey DR (2011) Allele-selective inhibition of ataxin-3 (ATX3) expression by antisense oligomers and duplex RNAs. Biol Chem 392: 315-325. https://doi.org/10.1515/BC.2011.045.
  • Hu J, Liu J, Corey DR (2010) Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem Biol 17: 1183-1188. https://doi.org/10.1016/j.chembiol.2010.10.013.
  • Hu J, Liu J, Narayanannair KJ, Lackey JG, Kuchimanchi S, Rajeev KG, Manoharan M, Swayze EE, Lima WF, Prakash TP, Xiang Q, Martinez C, Corey DR (2014a) Allele-selective inhibition of mutant atrophin-1 expression by duplex and single-stranded RNAs. Biochemistry 53: 4510-4518. https://doi.org/10.1021/bi500610r.
  • Hu J, Liu J, Yu D, Aiba Y, Lee S, Pendergraff H, Boubaker J, Artates JW, Lagier-Tourenne C, Lima WF, Swayze EE, Prakash TP, Corey DR (2014b) Exploring the effect of sequence length and composition on allele-selective inhibition of human huntingtin expression by single-stranded silencing RNAs. Nucleic Acid Ther 24: 199-209. https://doi.org/10.1089/nat.2013.0476.
  • Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S, Arar K, Wu J, Bezprozvanny I, Corey DR (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27: 478-484. https://doi.org/10.1038/nbt.1539.
  • Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11: 125-140. https://doi.org/10.1038/nrd3625.
  • Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW (2012) Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74: 1031-1044. https://doi.org/10.1016/j.neuron.2012.05.009.
  • Kumar A, Kumar Singh S, Kumar V, Kumar D, Agarwal S, Rana MK (2015) Huntington's disease: an update of therapeutic strategies. Gene 556: 91-97. https://doi.org/10.1016/j.gene.2014.11.022.
  • Labbadia J, Morimoto RI (2013) Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38: 378-385. https://doi.org/10.1016/j.tibs.2013.05.003.
  • Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST (2012) Single-stranded siRNAs activate RNAi in animals. Cell 150: 883-894. https://doi.org/10.1016/j.cell.2012.08.014.
  • Liu J, Pendergraff H, Narayanannair KJ, Lackey JG, Kuchimanchi S, Rajeev KG, Manoharan M, Hu J, Corey DR (2013) RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression. Nucleic Acids Res 41: 8788-8801. https://doi.org/10.1093/nar/gkt594.
  • Liu J, Yu D, Aiba Y, Pendergraff H, Swayze EE, Lima WF, Hu J, Prakash TP, Corey DR (2013) ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy. Nucleic Acids Res 41: 9570-9583. https://doi.org/10.1093/nar/gkt693.
  • Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110: 563-574.
  • Østergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, Vaid K, Villanueva EB, Swayze EE, Bennett CF, Hayden MR, Seth PP (2013) Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41: 9634-9650. https://doi.org/10.1093/nar/gkt725.
  • Sibley CR, Seow Y, Wood MJ (2010) Novel RNA-based strategies for therapeutic gene silencing. Mol Ther 18: 466-476. https://doi.org/10.1038/mt.2009.306.
  • Sipa K, Sochacka E, Kazmierczak-Baranska J, Maszewska M, Janicka M, Nowak G, Nawrot B (2007) Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13: 1301-1316. https://doi.org/10.1261/rna.538907.
  • Stiles DK, Zhang Z, Ge P, Nelson B, Grondin R, Ai Y, Hardy P, Nelson PT, Guzaev AP, Butt MT, Charisse K, Kosovrasti V, Tchangov L, Meys M, Maier M, Nechev L, Manoharan M, Kaemmerer WF, Gwost D, Stewart GR, Gash DM, Sah DW (2011) Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol 233: 463-471. https://doi.org/10.1016/j.expneurol.2011.11.020.
  • Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 9: 2799-2809.
  • Wang YL, Liu W, Wada E, Murata M, Wada K, Kanazawa I (2005) Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA. Neurosci Res 53: 241-249.
  • Xu Y, Linde A, Larsson O, Thormeyer D, Elmen J, Wahlestedt C, Liang Z (2004) Functional comparison of single- and double-stranded siRNAs in mammalian cells. Biochem Biophys Res Commun 316: 680-687.
  • Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, Lima WF, Crooke ST, Prakash TP, Corey DR (2012) Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 150: 895-908. https://doi.org/10.1016/j.cell.2012.08.002.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p759kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.