Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 609-621

Article title

Overview of the RNA G-quadruplex structures

Content

Title variants

Languages of publication

EN

Abstracts

EN
G-quadruplexes are non-canonical secondary structures which may be formed by guanine rich sequences, both in vitro and in living cells. The number of biological functions assigned to these structural motifs has grown rapidly since the discovery of their involvement in the telomere maintenance. Knowledge of the G-quadruplexes' three-dimensional structures plays an important role in understanding of their conformational diversity, physiological functions, and in the design of novel drugs targeting the G-quadruplexes. In the last decades, structural studies have been mainly focused on the DNA G-quadruplexes. Their RNA counterparts gained an increased interest along with a still-emerging recognition of the central role of RNA in multiple cellular processes. In this review we focus on structural properties of the RNA G-quadruplexes, based on high-resolution structures available in the RCSB PDB data base and on structural models. In addition, we point out the current challenges in this field of research.

Year

Volume

63

Issue

4

Pages

609-621

Physical description

Dates

published
2016
received
2016-05-30
revised
2016-06-28
accepted
2016-07-07
(unknown)
2016-11-02

Contributors

  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
author
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

  • Adrian M, Heddi B, Phan AT (2012) NMR Spectroscopy of G-Quadruplexes. Methods 57: 11-24. https://doi.org/10.1016/j.ymeth.2012.05.003.
  • Agarwala P, Pandey S, Maiti S (2015) The Tale of RNA G-Quadruplex. Org Biomol Chem 13: 5570-5585. https://doi.org/10.1039/C4OB02681K.
  • Ambrus A, Chen D, Dai J, Bialis T, Jones R, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular g-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34: 2723-2735. https://doi.org/10.1093/nar/gkl348.
  • Awang G, Sen D (1993) Mode of Dimerization of HIV-1 Genomic RNA. Biochemistry 32: 11453-11457. https://doi.org/10.1021/bi00093a024.
  • Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318: 798-801. https://doi.org/10.1126/science.1147182.
  • Balasubramanian S, Neidle S (2009) G-Quadruplex nucleic acids as therapeutic targets. Curr Opin Chem Biol 13: 345-353. https://doi.org/10.1016/j.cbpa.2009.04.637.
  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5: 182-186. https://doi.org/10.1038/nchem.1548.
  • Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6: 75-80. https://doi.org/10.1038/nchem.1805.
  • Bugaut A, Rodriguez R, Kumari S, Hsu ST, Balasubramanian S (2010) Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org Biomol Chem 8: 2771-2776. https://doi.org/10.1039/c002418j.
  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34: 5402-5415. https://doi.org/10.1093/nar/gkl655.
  • Cahoon LA, Seifert HS (2009) An alternative DNA structure is necessary for pilin antigenic variation in neisseria gonorrhoeae. Science 325: 764-767. https://doi.org/10.1126/science.1175653.
  • Campbell NH, Parkinson GN (2007) Crystallographic studies of quadruplex nucleic acids. Methods 43: 252-263. https://doi.org/10.1016/j.ymeth.2007.08.005.
  • Campbell NH, Collie GW, Neidle S (2012) Crystallography of DNA and RNA G-quadruplex nucleic acids and their ligand complexes. Curr Protoc Nucleic Acid Chem Chapter 17: Unit17.6. https://doi.org/10.1002/0471142700.nc1706s50.
  • Cheong C, Moore PB (1992) Solution structure of an unusually stable RNA Tetraplex containing G- and U-quartet structures. Biochemistry 31: 8406-8414. https://doi.org/10.1021/bi00151a003.
  • Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40: 5867-5892. https://doi.org/10.1039/c1cs15067g.
  • Collie GW, Haider SM, Neidle S, Parkinson GN (2010) A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res 38: 5569-5580. https://doi.org/10.1093/nar/gkq259.
  • Collie GW, Sparapani S, Parkinson GN, Neidle S (2011) Structural basis of telomeric RNA quadruplex-acridine ligand recognition. J Am Chem Soc 133: 2721-2728. https://doi.org/10.1021/ja109767y.
  • Deng J, Xiong Y, Sundaralingam M (2001) X-Ray analysis of an RNA tetraplex (UGGGGU)4 with divalent Sr2+ ions at subatomic resolution (0.61 Å). Proc Natl Acad Sci USA 98: 13665-13670. https://doi.org/10.1073/pnas.241374798.
  • Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and orc recruitment at telomeres. Molecular Cell 35: 403-413. https://doi.org/10.1016/j.molcel.2009.06.025.
  • Di Antonio M, Biffi G, Mariani A, Raiber EA, Rodriguez R, Balasubramanian S (2012) Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angewandte Chemie International Edition 51: 11073-11078. https://doi.org/10.1002/anie.201206281.
  • Eddy J, Maizels N (2007) Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res 36: 1321-1333. https://doi.org/10.1093 /nar/gkm1138.
  • Faudale M, Cogoi S, Xodo LE (2012) Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5'-UTR of KRAS oncogene represses translation. Chem Commun (Camb) 48: 874-876. https://doi.org/10.1039/C1CC15850C.
  • Fyfe AC, Dunten PW, Martick MM, Scott WG (2015) Structural variations and solvent structure of r(UGGGGU) quadruplexes stabilized by Sr2+ Ions. J Mol Biol 427: 2205-2219. https://doi.org/10.1016/j.jmb.2015.03.022.
  • Garant JM, Luce MJ, Scott MS, Perreault JP (2015) G4RNA: An RNA G-quadruplex database. Database (Oxford) 2015: bav059. https://doi.org/10.1093/database/bav059.
  • Gavathiotis E, Searle MS (2003) Structure of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat: evidence for A-Tetrad formation from NMR and molecular dynamics simulations. Org Biomol Chem 1: 1650-1656. https://doi.org/10.1039/b300845m.
  • Gomez D, Guedin A, Mergny JL, Salles B, Riou JF, Teulade-Fichou MP, Calsou P (2010) A G-quadruplex structure within the 5'-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res 38: 7187-7198. https://doi.org/10.1093/nar/gkq563.
  • Gudanis D, Popenda L, Szpotkowski K, Kierzek R, Gdaniec Z (2016) Structural characterization of a dimer of RNA duplexes composed of 8-bromoguanosine modified CGG trinucleotide repeats: a novel architecture of RNA quadruplexes. Nucleic Acids Res 44: 2409-2416. https://doi.org/10.1093/nar/gkv1534.
  • Halder K, Largy E, Benzler M, Teulade-Fichou MP, Hartig JS (2011) Efficient suppression of gene expression by targeting 5'-UTR-based RNA quadruplexes with bisquinolinium compounds. Chem Bio Chem 12: 1663-1668. https://doi.org/10.1002/cbic.201100228.
  • Huang H, Suslov NB, Li NS, Shelke SA, Evans ME, Koldobskaya Y, Rice PA, Piccirilli JA (2014) A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat Chem Biol 10: 686-691. https://doi.org/10.1038/nchembio.1561.
  • Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33: 2908-2916. https://doi.org/10.1093/nar/gki609.
  • Huppert JL, Bugaut A, Kumari S, Balasubramanian S (2008) G-quadruplexes: the beginning and end of UTRs Nucleic Acids Res 36: 6260-6268. https://doi.org/10.1093/nar/gkn511.
  • Huppert JL (2008) Hunting G-quadruplexes. Biochimie 90: 1140-1148. https://doi.org/10.1016/j.biochi.2008.01.014.
  • Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C (2011) Research progress of RNA quadruplex. Nucleic Acid Therapeutics 21: 185-200. https://doi.org/10.1089/nat.2010.0272.
  • Kerwin S (2000) G-quadruplex DNA as a target for drug design. Curr Pharm Des 6: 441-471. https://doi.org/10.2174/1381612003400849.
  • Kimura T, Xu Y, Komiyama M (2009) Human Telomeric RNA r(UAGGGU) Sequence forms parallel tetraplex structure with U-quartet. Nucleic Acids Symp Ser (Oxf) 53: 239-240. https://doi.org/10.1093/nass/nrp120.
  • Krishnan-Ghosh Y, Stephens E, Balasubramanian S (2004) A PNA4 quadruplex. J Am Chem Soc 126: 5944-5945. https://doi.org/10.1021/ja031508f.
  • Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3: 218-221. https://doi.org/10.1038/nchembio864.
  • Laguerre A, Hukezalie K, Winckler P, Katranji F, Chanteloup G, Pirrotta M, Perrier-Cornet JM, Wong JM, Monchaud D (2015) Visualization of RNA-quadruplexes in live cells. J Am Chem Soc 137: 8521-8525. https://doi.org/10.1021/jacs.5b03413.
  • Le TV, Han S, Chae J, Park HJ (2012) G-quadruplex binding ligands: from naturally occurring to rationally designed molecules. Curr Pharm Des 18: 1948-1972. https://doi.org/10.2174/138161212799958431.
  • Lipay JM, Mihailescu MR (2009) NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). Mol Biosyst 5: 1347-1355. https://doi.org/10.1039/b911555b.
  • Liu H, Matsugami A, Katahira M, Uesugi S (2002) A dimeric RNA quadruplex architecture comprised of two G:G(:A):G:G(:A) hexads, G:G:G:G tetrads and UUUU loops. J Mol Biol 322: 955-970. https://doi.org/10.1016/S0022-2836(02)00876-8.
  • Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z (2014) Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 42: 10196-10207. https://doi.org/10.1093/nar/gku710.
  • Mariani P, Spinozzi F, Federiconi F, Amenitsch H, Spindler L, Drevensek-Olenik I (2009) Small angle X-ray scattering analysis of deoxyguanosine 5'-monophosphate self-assembing in solution: nucleation and growth of G-quadruplexes. J Phys Chem B 113: 7934-44. https://doi.org/10.1021/jp809734p.
  • Mariani P, Spinozzi F, Federiconi F, Ortore MG, Amenitsch H, Spindler L, Drevensek-Olenik I (2010) Guanosine quadruplexes in solution: a small-angle X-ray scattering analysis of temperature effects on self-assembling of deoxyguanosine monophosphate. J Nucleic Acids 2010: 472478. https://doi.org/10.4061/2010/472478.
  • Marquet R, Paillart JC, Skripkin E, Ehresmann C, Ehresmann B (1994) Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Res 22: 145-151. https://doi.org/10.1093/nar/22.2.145.
  • Martadinata H, Phan AT (2009) Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc 131: 2570-2578. https://doi.org/10.1021/ja806592z.
  • Martadinata H, Heddi B, Lim KW, Phan AT (2011) Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks. Biochemistry 50: 6455-6461. https://doi.org/10.1021/bi200569f.
  • Martadinata H, Phan AT (2013) Structure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K+ solution. Biochemistry 52: 2176-21783. https://doi.org/10.1021/bi301606u.
  • Mashima T, Matsugami A, Nishikawa F, Nishikawa S, Katahira M (2009) Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucleic Acids Res 37: 6249-6258. https://doi.org/10.1093/nar/gkp647.
  • Medic Š, Podbevšek P, Plavec J (2014) Solution structure of a prion protein aptamer analogue. Croatica Chemica Acta 87: 321-325. https://doi.org/10. 5562/cca2430
  • Metifiot M, Amrane S, Litvak S, Andreola ML (2014) G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 42: 12352-12366. https://doi.org/10.1093/nar/gku999.
  • Millevoi S, Moine H, Vagner S (2012) G-quadruplexes in RNA biology. Wiley Interdisciplinary Reviews. RNA 3: 495-507. https://doi.org/10.1002/wrna.1113.
  • Morris MJ, Wingate KL, Silwal J, Leeper TC, Basu S (2012) The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res 40: 4137-4145. https://doi.org/10.1093/nar/gkr1308.
  • Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J (2014) G-quadruplexes regulate epstein-barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 10: 358-364. https://doi.org/10.1038/nchembio.1479.
  • Nandakumar J, Podell ER, Cech TR (2010) How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proc Natl Acad Sci USA 107: 651-656. https://doi.org/10.1073/pnas.0911099107.
  • Pan B, Xiong Y, Shi K, Deng J, Sundaralingam M (2003) Crystal structure of an RNA purine-rich tetraplex containing adenine tetrads. Structure 11: 815-823. https://doi.org/10.1016/S0969-2126(03)00107-2.
  • Pan B, Xiong Y, Shi K, Sundaralingam M (2003a) An eight-stranded helical fragment in RNA crystal structure. Structure 11: 825-831. https://doi.org/10.1016/S0969-2126(03)00108-4.
  • Pan B, Xiong Y, Shi K, Sundaralingam M (2003b) Crystal structure of a bulged RNA tetraplex at 1.1 Å resolution. Structure 11: 1423-1430. https://doi.org/10.1016/j.str.2003.09.017.
  • Pan B, Shi K, Sundaralingam M (2006a) Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the I-motif RNA octaplex. Proc Natl Acad Sci USA 103: 3130-3134. https://doi.org/10.1073/pnas.0507730103.
  • Pan B, Shi K, Sundaralingam M (2006b) Crystal structure of an RNA quadruplex containing inosine tetrad: implications for the roles of NH2 group in purine tetrads. J Mol Biol 363: 451-459. https://doi.org/10.1016/j.jmb.2006.08.022.
  • Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417: 876-880. https://doi.org/10.1038/nature755.
  • Randazzo A, Esposito V, Ohlenschläger O, Ramachandran R, Mayola L (2004) NMR solution structure of a parallel LNA quadruplex. Nucleic Acids Res 32: 3083-3092. https://doi.org/10.1093/nar/gkh629.
  • Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38: 5797-5806. https://doi.org/10.1093/nar/gkq296.
  • Russo Krauss I, Parkinson GR, Merlino A, Mattia CA, Randazzo A, Novellino E, Mazzarella L, Sica F (2014) A regular thymine tetrad and a peculiar supramolecular assembly in the first crystal structure of an All-LNA G-quadruplex. Acta Crystallogr D Biol Crystallogr 70: 362-370. https://doi.org/10.1107/S1399004713028095.
  • Satyanarayana M, Kim YA, Rzuczek SG, Pilch DS, Liu AA, Liu LF, Rice JE, LaVoie EJ (2010) Macrocyclic hexaoxazoles: influence of aminoalkyl substituents on RNA and DNA G-quadruplex stabilization and cytotoxicity. Bioorg Med Chem Lett 20: 3150-3154. https://doi.org/10.1016/j.bmcl.2010.03.086.
  • Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 98: 8572-8577. https://doi.org/10.1073/pnas.141229498.
  • Shen W, Gorelick RJ, Bambara RA (2011) HIV-1 nucleocapsid protein increases strand transfer recombination by promoting dimeric G-quartet formation. J Biol Chem 286: 29838-29847. https://doi.org/10.1074/jbc.M111.262352.
  • Shrestha P, Xiao S, Dhakal S, Tan Z, Mao H (2014) Nascent RNA transcripts facilitate the formation of G-quadruplexes. Nucleic Acids Res 42: 7236-7246. https://doi.org/10.1093/nar/gku416.
  • Sket P, Plavec J (2015) Diversity of DNA and RNA G-quadruplex structures. Future Science 2: 22-36. https://doi.org/10.4155/fseb12013.13.28.
  • Spindler L, Drevensek-Olenik I, Copic M, Cerar J, Skerjanc J, Mariani P (2004) Dynamic light scattering and 31P NMR study of the self-assembly of deoxyguanosine 5'-monophosphate: the effect of added salt. Eur Phys J E, Soft Matter 13: 27-33. https://doi.org/10.1140/epje/e2004-00037-0.
  • Sundquist WI, Heaphy S (1993) Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc Natl Acad Sci 90: 3393-3397. https://doi.org/10.1073/pnas.90.8.3393.
  • Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33: 2901-2907. https://doi.org/10.1093/nar/gki553.
  • Vummidi BR, Alzeer J, Luedtke NW (2013) Fluorescent probes for G-quadruplex structures. Chem Bio Chem 14: 540-558. https://doi.org/10.1002/cbic.201200612.
  • Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1: 263-282. https://doi.org/10.1016/0969-2126(93)90015-9.
  • Warner KD, Chen MC, Song W, Strack RL, Thorn A, Jaffrey SR, Ferré-D'Amaré AR (2014) Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol 21: 658-663. https://doi.org/10.1038/nsmb.2865.
  • Webba da Silva M (2007) NMR methods for studying quadruplex nucleic acids. Methods 43: 264-277. https://doi.org/10.1016/j.ymeth.2007.05.007.
  • Xiong YX, Huang ZS, Tan JH (2015) Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur J Med Chem 97: 538-551. https://doi.org/10.1016/j.ejmech.2014.11.021.
  • Xu S, Li Q, Xiang J, Yang Q, Sun H, Guan A, Wang L (2015) Directly lighting up RNA G-quadruplexes from test tubes to living human cells. Nucleic Acids Res 43: 9575-9586. https://doi.org/10.1093/nar/gkv1040.
  • Xu Y, Kaminaga K, Komiyama M (2008a) Human telomeric RNA in G-quadruplex structure. Nucleic Acids Symp Ser (Oxf) 52: 175-176. https://doi.org/10.1093/nass/nrn089.
  • Xu Y, Kaminaga K, Komiyama M (2008b) G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J Am Chem Soc 130: 11179-11184. https://doi.org/10.1021/ja8031532.
  • Xu Y, Suzuki Y, Komiyama M (2009) Click chemistry for the identification of G-quadruplex structures: discovery of a DNA-RNA G-quadruplex. Angewandte Chemie 48: 3281-3284. https://doi.org/10.1002/anie.200806306.
  • Xu Y, Ishizuka T, Kimura T, Komiyama M (2010) A U-tetrad stabilizes human telomeric RNA G-quadruplex structure. J Am Chem Soc 132: 7231-7233. https://doi.org/10.1021/ja909708a.
  • Xu Y, Komiyama M (2012) Structure, function and targeting of human telomere RNA. Methods 57: 100-105. https://doi.org/10.1016/j.ymeth.2012.02.015.
  • Zhang N, Phan AT, Patel DJ (2005) (3 + 1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex. J Am Chem Soc 127: 17277-17285. https://doi.org/10.1021/ja0543090.
  • Zhang S, Wu Y, Zhang W (2014) G-quadruplex structures and their interaction diversity with ligands. Chem Med Chem 9: 899-911. https://doi.org/10.1002/cmdc.201300566.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p609kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.