Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 4 | 601-607

Article title

When small RNAs become smaller: emerging functions of snoRNAs and their derivatives

Content

Title variants

Languages of publication

EN

Abstracts

EN
Small nucleolar RNAs (snoRNAs) are molecules located in the cell nucleolus and in Cajal bodies. Many scientific reports show that snoRNAs are not only responsible for modifications of other RNAs but also fulfill multiple other functions such as metabolic stress regulation or modulation of alternative splicing. Full-length snoRNAs as well as small RNAs derived from snoRNAs have been implied in human diseases such as cancer or Prader-Willi Syndrome. In this review we describe emerging, non-canonical roles of snoRNAs and their derivatives with the emphasis on their role in human diseases.

Keywords

Year

Volume

63

Issue

4

Pages

601-607

Physical description

Dates

published
2016
received
2016-05-30
revised
2016-07-28
accepted
2016-08-08
(unknown)
2016-10-26

Contributors

author
  • Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
  • Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland

References

  • Babiarz JE, Hsu R, Melton C, Thomas M, Ullian EM, Blelloch R (2011) A role for noncanonical microRNAs in the mammalian brain revealed by phenotypic differences in Dgcr8 versus Dicer1 knockouts and small RNA sequencing. RNA 17: 1489-1501. https://doi.org/10.1261/rna.2442211.
  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22: 2773-2785. https://doi.org/10.1101/gad.1705308.
  • Bai B, Yegnasubramanian S, Wheelan SJ, Laiho M (2014) RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs. PLoS One 9: e107519. https://doi.org/10.1371/journal.pone.0107519.
  • Belin S, Beghin A, Solano-Gonzalez E, Bezin L, Brunet-Manquat S, Textoris J, Prats AC, Mertani HC, Dumontet C, Diaz JJ (2009) Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 4: e7147. https://doi.org/10.1371/journal.pone.0007147.
  • Bortolin-Cavaille ML, Cavaille J (2012) The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res 40: 6800-6807. https://doi.org/10.1093/nar/gks321.
  • Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J (2011) Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 39: 675-686. https://doi.org/10.1093/nar/gkq776.
  • Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, Daub CO (2011) Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 8: 158-177.
  • Chang LS, Lin SY, Lieu AS, Wu TL (2002) Differential expression of human 5S snoRNA genes. Biochem Biophys Res Commun 299: 196-200.
  • de los Santos T, Schweizer J, Rees CA, Francke U (2000) Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. Am J Hum Genet 67: 1067-1082. https://doi.org/10.1086/303106.
  • de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GS, O'Rahilly S, Froguel P, Farooqi IS, Blakemore AI (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18: 3257-3265. https://doi.org/10.1093/hmg/ddp263.
  • Dong JT (2001) Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 20: 173-193.
  • Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT (2009) Implication of snoRNA U50 in human breast cancer. J Genet Genomics 36: 447-454. https://doi.org/10.1016/S1673-8527(08)60134-4.
  • Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, Stevens VL, Calle EE, Dong JT (2008) SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17: 1031-1042. https://doi.org/10.1093/hmg/ddm375.
  • Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 18: 1196-1201. https://doi.org/10.1038/ejhg.2010.102.
  • Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32: 519-528. https://doi.org/10.1016/j.molcel.2008.10.017.
  • Falaleeva M, Stamm S (2013) Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 35: 46-54. https://doi.org/10.1002/bies.201200117.
  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893-2917. https://doi.org/10.1002/ijc.25516.
  • Houseley J, Tollervey D (2008) The nuclear RNA surveillance machinery: the link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 1779: 239-246. https://doi.org/10.1016/j.bbagrm.2007.12.008.
  • Hutzinger R, Feederle R, Mrazek J, Schiefermeier N, Balwierz PJ, Zavolan M, Polacek N, Delecluse HJ, Huttenhofer A (2009) Expression and processing of a small nucleolar RNA from the Epstein-Barr virus genome. PLoS Pathog 5: e1000547. https://doi.org/10.1371/journal.ppat.1000547.
  • Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, Daub CO, Kai C, Kawai J, Yasuda J, Carninci P, Hayashizaki Y (2008) Hidden layers of human small RNAs. BMC Genomics 9: 157. https://doi.org/10.1186/1471-2164-9-157.
  • Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19: 1153-1164. https://doi.org/10.1093/hmg/ddp585.
  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311: 230-232. https://doi.org/10.1126/science.1118265.
  • Li W, Saraiya AA, Wang CC (2011) Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 5: e1338. https://doi.org/10.1371/journal.pntd.0001338.
  • Li Z, Ender C, Meister G, Moore PS, Chang Y, John B (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40: 6787-6799. https://doi.org/10.1093/nar/gks307.
  • Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, Liu Z, Jiang F (2010) Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 9: 198. https://doi.org/10.1186/1476-4598-9-198.
  • Martens-Uzunova ES, Hoogstrate Y, Kalsbeek A, Pigmans B, Vredenbregt-van den Berg M, Dits N, Nielsen SJ, Baker A, Visakorpi T, Bangma C, Jenster G (2015) C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget 6: 17430-17444. https://doi.org/10.18632/oncotarget.4172.
  • Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, Bangma CH, Litman T, Visakorpi T, Jenster G (2012) Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31: 978-991. https://doi.org/10.1038/onc.2011.304.
  • Mei YP, Liao JP, Shen J, Yu L, Liu BL, Liu L, Li RY, Ji L, Dorsey SG, Jiang ZR, Katz RL, Wang JY, Jiang F (2012) Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 31: 2794-2804. https://doi.org/10.1038/onc.2011.449.
  • Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE (2011) Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab 14: 33-44. https://doi.org/10.1016/j.cmet.2011.04.009.
  • Mleczko AM, Celichowski P, Bąkowska-Żywicka K (2014) Ex-translational function of tRNAs and their fragments in cancer. Acta Biochim Pol 61: 211-216.
  • Pan YZ, Zhou A, Hu Z, Yu AM (2013) Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos 41: 1744-1751. https://doi.org/10.1124/dmd.113.052092.
  • Qu G, Kruszka K, Plewka P, Yang SY, Chiou TJ, Jarmolowski A, Szweykowska-Kulinska Z, Echeverria M, Karlowski WM (2015) Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics 16: 1009. https://doi.org/10.1186/s12864-015-2221-x.
  • Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40: 719-721. https://doi.org/10.1038/ng.158.
  • Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4: e1000224. https://doi.org/10.1371/journal.ppat.1000224.
  • Scott MS, Ono M, Yamada K, Endo A, Barton GJ, Lamond AI (2012) Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Res 40: 3676-3688. https://doi.org/10.1093/nar/gkr1233.
  • Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15: 1233-1240. https://doi.org/10.1261/rna.1528909.
  • Tyczewska A, Bąkowska-Żywicka K, Gracz J, Twardowski T (2016) Stress responsive non-protein coding RNAs, abiotic and biotic stress in plants - recent advances and future perspectives, chapter 7
  • Valleron W, Laprevotte E, Gautier EF, Quelen C, Demur C, Delabesse E, Agirre X, Prosper F, Kiss T, Brousset P (2012) Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia 26: 2052-2060. https://doi.org/10.1038/leu.2012.111.
  • Valleron W, Ysebaert L, Berquet L, Fataccioli V, Quelen C, Martin A, Parrens M, Lamant L, de Leval L, Gisselbrecht C, Gaulard P, Brousset P (2012) Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T-cell lymphoma. Blood 120: 3997-4005. https://doi.org/10.1182/blood-2012-06-438135.
  • Walkowiak M, Mleczko AM, Bąkowska-Żywicka K (2016) Evaluation of methods for detection of low-abundant snoRNA-derived small RNAs in Saccharomyces cerevisiae. BioTechnologia 97: 19-26. https://doi.org/10.5114/bta.2016. 58540
  • Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, Wang W, Qi ZT (2014) Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer 13: 216. https://doi.org/10.1186/1476-4598-13-216.
  • Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, Neilsen PM (2015) p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA. PLoS One 10: e0129190. https://doi.org/10.1371/journal.pone.0129190.
  • Zheng D, Zhang J, Ni J, Luo J, Wang J, Tang L, Zhang L, Wang L, Xu J, Su B, Chen G (2015) Small nucleolar RNA 78 promotes the tumorigenesis in non-small cell lung cancer. J Exp Clin Cancer Res 34: 49. https://doi.org/10.1186/s13046-015-0170-.
  • Zou AE, Ku J, Honda TK, Yu V, Kuo SZ, Zheng H, Xuan Y, Saad MA, Hinton A, Brumund KT, Lin JH, Wang-Rodriguez J, Ongkeko WM (2015) Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma. RNA 21: 1122-1134. https://doi.org/10.1261/rna.049262.114.
  • Zywicki M, Bakowska-Zywicka K, Polacek N (2012) Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis. Nucleic Acids Res 40: 4013-4024. https://doi.org/10.1093/nar/gks020.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p601kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.