Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 1 | 1-9

Article title

The roles of purinergic signaling in psychiatric disorders

Content

Title variants

Languages of publication

EN

Abstracts

EN
Ecto-purines and ecto-pyrimidines are present in the extracellular space of the central nervous system (CNS). Together with P1 and P2 receptors and nucleotides metabolizing ecto-enzymes, they make signaling system involved in neurotransmission, the modulation of sensory signals, including pain stimuli conduction, and the induction of apoptosis and necrosis of the cells. Purines and pyrimidines have a dual effect: positive (neuroprotective) of nucleosides, and negative (pro-inflammatory and pro-apoptotic) of nucleotides. Adenosine-5'-triphosphate (ATP) in the CNS triggers the pro-inflammatory reactions, predominantly by activation of the P2X7 receptor, which results in production and release of pro-inflammatory cytokines. In contrast to ATP, adenosine acts generally as an anti-inflammatory agent and plays an important role in neuroprotection. Currently, it is believed that the initiation of CNS diseases, including mental disorders, is caused by any imbalance between the concentration of ATP and adenosine in the extracellular space. Genetic tests provide also the evidence for the participation of purinergic signaling in psychiatric disorders. It is believed that any action leading to the effective increase of adenosine concentration: activation of nucleotide metabolizing ecto-enzymes (mainly NTPDases - nucleoside triphosphate diphosphohydrolases), inhibition of adenosine deaminase and/or adenosine kinase activity as well as therapies using P1 receptor agonists (adenosine or its analogues) might be beneficial in therapy of psychiatric disorders.

Year

Volume

63

Issue

1

Pages

1-9

Physical description

Dates

published
2016
received
2015-03-08
revised
2015-06-14
accepted
2015-10-02
(unknown)
2015-10-23

Contributors

  • Neurology Clinic, Marek Cieślak, Toruń, Poland
  • Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Poland
  • Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Torun, Poland

References

  • Abi-Dargham A, Rodenhiser D, Printz Y, Zea-Ponce R, Gil L, Kegeles R, Weiss T, Cooper J, Mann R, Van Heertum J, Gorman M, Laruelle (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97: 8104-8109.
  • Akhondzadeh S, Milajerdi MR, Amini H, Tehrani-Doost M (2006) Allopurinol as an adjunct to lithium and haloperidol for treatment of patients with acute mania: a double-blind, randomized, placebocontrolled trial. Bipolar Disord 8: 485-489.
  • Aliagas E, Villar-Menéndez I, Sévigny J, Roca M, Romeu M, Ferrer I, Martín-Satué M, Barrachina M (2013) Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the 'adenosine hypothesis'. Purinergic Signal 9: 599-608.
  • Anumonye A, Reading HW, Knight F, Ashcroft GW (1968) Uric-acid metabolism in manic-depressive illness and during lithium therapy. Lancet 1: 1290-1293.
  • Azdad K, Gall D, Woods AS, Ledent C, Ferré S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34: 972-986.
  • Backlund L, Nikamo P, Hukic DS, Ek IR, Träskman-Bendz L, Landén M, Edman G, Schalling M, Frisén L, Osby U (2011) Cognitive manic symptoms associated with the P2RX7 gene in bipolar disorder. Bipolar Disord 13: 500-508.
  • Backlund L, Lavebratt C, Frisén L, Nikamo P, Hukic Sudic D, Träskman-Bendz L, Landén M, Edman G, Vawter MP, Ösby U, Schalling M (2012) P2RX7: expression responds to sleep deprivation and associates with rapid cycling in bipolar disorder type 1. PLoS One 7: e43057.
  • Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG (1995) Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378: 182-186.
  • Barden N, Harvey M, Gagné B, Shink E, Tremblay M, Raymond C, Labbé M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Müller-Myhsok B (2006) Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 141B: 374-382.
  • Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira Á, Colla AR, Rodrigues AL (2010) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234: 137-148.
  • Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF (2010) Uric acid as a CNS antioxidant. J Alzheimers Dis 19: 1331-1336.
  • Brocardo Pde S, Budni J, Lobato KR, Kaster MP, Rodrigues AL (2008) Antidepressant-like effect of folic acid: Involvement of NMDA receptors and L-arginine-nitric oxide-cyclic guanosine monophosphate pathway. Eur J Pharmacol 598: 37-42.
  • Brunstein MG, Silveira EM Jr, Chaves LS, Machado H, Schenkel O, Belmonte-de-Abreu P, Souza DO, Lara DR (2007) Increased serum adenosine deaminase activity in schizophrenic receiving antipsychotic treatment. Neurosci Lett 414: 61-64. Epub 2007 Jan 8.
  • Burnstock G (1978) Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. Straub RW, Bolis L, eds. Raven Press, New York. pp. 107-118.
  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol 16: 433-440.
  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87: 659-797.
  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7: 575-590.
  • Burnstock G, Krugel U, Abbracchio M, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95: 229-274.
  • Cieślak M, Komoszyński M, Wojtczak A (2008) Adenosine A(2A) receptors in Parkinson's disease treatment. Purinergic Signal 4: 305-312.
  • Cieślak M, Kukulski F, Komoszyński M (2011) Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal 7: 393-402.
  • Cieślak M, Czarnecka J, Roszek K, Komoszyński M (2015) The role of purinergic signalling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 11: 307-316.
  • Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26: 2080-2087.
  • Collingridge GL (1994) Long-term potentiation. A question of reliability. Nature 371: 652-653.
  • Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18: 54-56.
  • Cornelis MC, El-Sohemy A, Campos H (2007) Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr 86: 240-244.
  • Coyle JT (2012) NMDA receptor and schizophrenia: a brief history. Schizophr Bull 38: 920-926.
  • Cotrina ML, Lin JH, López-García JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20: 2835-2844.
  • Csölle C, Baranyi M, Zsilla G, Kittel A, Goloncser F, Illes P, Papp E, Vizi E, Sperlagh B (2013) Neurochemical changes in the mouse hippocampus underlying the antidepressant effect of genetic deletion of P2X7 receptors. PLoS One 8: e66547. Print 2013.
  • Cunha RA (2005) Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1: 111-134.
  • Czarnecka J, Roszek K, Jabłoński A, Smoliński DJ, Komoszyński M (2011) Some aspects of purinergic signaling in the ventricular system of porcine brain. Acta Vet Scand 53: 54.
  • Cherkasova MV, Faridi N, Casey KF, O'Driscoll GA, Hechtman L, Joober R, Baker GB, Palmer J, Dagher A, Leyton M, Benkelfat C (2014) Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD. Neuropsychopharmacology 39: 1498-1507.
  • Deckert J, Brenner M, Durany N, Zöchling R, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Riederer P (2003) Up-regulation of striatal adenosine A(2A) receptors in schizophrenia. Neuroreport 14: 313-316.
  • Del Puerto A, Wandosell F, Garrido JJ (2013) Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci 7: 197.
  • Di Virgilio F (2007) Purinergic signalling in the immune system. A brief update. Purinergic Signal 3: 1-3.
  • Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32: 79-87.
  • Erhardt A, Lucae S, Unschuld PG, Ising M, Kern N, Salyakina D, Lieb R, Uhr M, Binder EB, Keck ME, Müller-Myhsok B, Holsboer F (2007) Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders. J Affect Disord 101: 159-168. Epub 2007 Jan 2.
  • Ferré S (1997) Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology (Berl) 133: 107-120.
  • Franco R, Ferré S, Agnati L, Torvinen M, Ginés S, Hillion J, Casadó V, Lledó P, Zoli M, Lluis C, Fuxe K (2000) Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 23: S50-S59.
  • Frau L, Borsini F, Wardas J, Khairnar AS, Schintu N, Morelli M (2011) Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease. Synapse 65: 181-188.
  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63: 191-270.
  • Fuller SJ, Stokes L, Skarratt KK, Gu BJ, Wiley JS (2009) Genetics of the P2X7 receptor and human disease. Purinergic Signal 5: 257-262.
  • Fuxe K, Canals M, Torvinen M, Marcellino D, Terasmaa A, Genedani S, Leo G, Guidolin D, Diaz-Cabiale Z, Rivera A, Lundstrom L, Langel U, Narvaez J, Tanganelli S, Lluis C, Ferré S, Woods A, Franco R, Agnati LF (2007) Intramembrane receptor-receptor interactions: a novel principle in molecular medicine. J Neural Transm 114: 49-75. Epub 2006 Oct 27.
  • Gajewska A, Blumenthal TD, Winter B, Herrmann MJ, Conzelmann A, Mühlberger A, Warrings B, Jacob C, Arolt V, Reif A, Zwanzger P, Pauli P, Deckert J, Domschke K (2013) Effects of ADORA2A gene variation and caffeine on prepulse inhibition: a multi-level risk model of anxiety. Prog Neuropsychopharmacol Biol Psychiatry 40: 115-121.
  • Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808: 1380-1399.
  • Gotoh L, Mitsuyasu H, Kobayashi Y, Oribe N, Takata A, Ninomiya H, Stanton VP Jr, Springett GM, Kawasaki H, Kanba S (2009) Association analysis of adenosine A1 receptor gene (ADORA1) polymorphisms with schizophrenia in a Japanese population. Psychiatr Genet 19: 328-335.
  • Green EK, Grozeva D, Raybould R, Elvidge G, Macgregor S, Craig I, Farmer A, McGuffin P, Forty L, Jones L, Jones I, O'Donovan MC, Owen MJ, Kirov G, Craddock N (2009) P2RX7: A bipolar and unipolar disorder candidate susceptibility gene? Am J Med Genet B Neuropsychiatr Genet 150B: 1063-1069.
  • Hejjas K, Szekely A, Domotor E, Halmai Z, Balogh G, Schilling B, Sarosi A, Faludi G, Sasvari-Szekely M, Nemoda Z (2009) Association between depression and the Gln460Arg polymorphism of P2RX7 gene: a dimensional approach. Am J Med Genet B Neuropsychiatr Genet 150B: 295-299.
  • Hohoff C, Garibotto V, Elmenhorst D, Baffa A, Kroll T, Hoffmann A, Schwarte K, Zhang W, Arolt V, Deckert J, Bauer A (2014) Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain. Neuropsychopharmacology 39: 2989-2999.
  • Hwang Y, Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, Lee D, Kim S (2013) Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry 3: e321.
  • Jagannathan K, Calhoun VD, Gelernter J, Stevens MC, Liu J, Bolognani F, Windemuth A, Ruaño G, Assaf M, Pearlson GD (2010) Genetic associations of brain structural networks in schizophrenia: a preliminary study. Biol Psychiatry 68: 657-666.
  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27: 1081-1090.
  • Kaster MP, Machado DG, Santos AR, Rodrigues AL (2012) Involvement of NMDA receptors in the antidepressant-like action of adenosine. Pharmacol Rep 64: 706-713.
  • Kesebir S, Tatlıdil Yaylacı E, Süner O, Gültekin BK (2014) Uric acid levels may be a biological marker for the differentiation of unipolar and bipolar disorder: the role of affective temperament. J Affect Disord 165: 131-134.
  • Kovács Z, Dobolyi A, Kékesi KA, Juhász G (2013) 5'-nucleotidases, nucleosides and their distribution in the brain: pathological and therapeutic implications. Curr Med Chem 20: 4217-4240.
  • Kraepelin E (1921) Manic-depressive insanity and paranoia. E. & S. Livingstone, Edinburgh.
  • Krügel U, Kittner H, Illes P (2001) Mechanisms of adenosine 5'-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Synapse 39: 222-232.
  • Kukulski F, Sevigny J, Komoszyński M (2004) Comparative hydrolysis of extracellular adenine nucleotides and adenosine in synaptic membranes from porcine brain cortex, hippocampus, cerebellum and medulla oblongata. Brain Res 1030: 49-56.
  • Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334: 199-217.
  • Lara DR, Souza DO (2000) Schizophrenia: a purinergic hypothesis. Med Hypotheses 54: 157-166.
  • Lara DR, Brunstein MG, Ghisolfi ES, Lobato MI, Belmonte-de-Abreu P, Souza DO (2001) Allopurinol augmentation for poorly responsive schizophrenia. Int Clin Psychopharmacol 16: 235-237.
  • Lara DR, Dall'Igna OP, Ghisolfi ES, Brunstein MG (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30: 617-629. Epub 2006 Mar 6.
  • Lau CI, Wang HC, Hsu JL, Liu ME (2013) Does the dopamine hypothesis explain schizophrenia? Rev Neurosci 24: 389-400.
  • Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal. 8: 359-373.
  • Lucas PB, Pickar D, Kelsoe J, Rapaport M, Pato C, Hommer D (1990) Effects of the acute administration of caffeine in patients with schizophrenia. Biol Psychiatry 28: 35-40.
  • Machado-Vieira R, Lara DR, Souza DO, Kapczinski F (2001) Therapeutic efficacy of allopurinol in mania associated with hyperuricemia. J Clin Psychopharmacol 21: 621-622.
  • Machado-Vieira R, Lara DR, Souza DO, Kapczinski F (2002) Purinergic dysfunction in mania: an integrative model. Med Hypotheses 58: 297-304.
  • Machado-Vieira R (2012) Purinergic system in the treatment of bipolar disorder: uric acid levels as a screening test in mania. J Clin Psychopharmacol 32: 735-736.
  • Maggio R, Aloisi G, Silvano E, Rossi M, Millan MJ (2009) Heterodimerization of dopamine receptors: new insights into functional and therapeutic significance. Parkinsonism Relat Disord 15 (Suppl 4): S2-S7.
  • Maj J, Rogóz Z, Skuza G (1992) The effects of combined treatment with MK-801 and antidepressant drugs in the forced swimming test in rats. Pol J Pharmacol Pharm 44: 217-226.
  • Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52: 142-154. Epub 2007 Jun 26.
  • Marek GJ (2009) Activation of adenosine(1) (A(1)) receptors suppresses head shakes induced by a serotonergic hallucinogen in rats. Neuropharmacology 56: 1082-1087.
  • Martinez JM, Garakani A, Yehuda R, Gorman JM (2012) Proinflammatory and 'resiliency' proteins in the CSF of patients with major depression. Depress Anxiety 29: 32-38.
  • Martini C, Tuscano D, Trincavelli ML, Cerrai E, Bianchi M, Ciapparelli A, Alessio L, Novelli L, Catena M, Lucacchini A, Cassano GB, Dell'Osso L (2006) Upregulation of A2A adenosine receptors in platelets from patients affected by bipolar disorders under treatment with classical antipsychotics. J Psychiatr Res 40: 81-88.
  • McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 60: 497-502.
  • Molero Y, Gumpert C, Serlachius E, Lichtenstein P, Walum H, Johansson D, Anckarsäter H, Westberg L, Eriksson E, Halldner L (2013) A study of the possible association between adenosine A2A receptor gene polymorphisms and attention-deficit hyperactivity disorder traits. Genes Brain Behav 12: 305-310.
  • Nishizaki T (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci 94: 100-102.
  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52: 998-1007.
  • Palucha A, Pilc A (2005) The involvement of glutamate in the pathophysiology of depression. Drug News Perspect 18: 262-268.
  • Pochwat B, Szewczyk B, Sowa-Kucma M, Siwek A, Doboszewska U, Piekoszewski W, Gruca P, Papp M, Nowak G (2014) Antidepressant-like activity of magnesium in the chronic mild stress model in rats: alterations in the NMDA receptor subunits. Int J Neuropsychopharmacol 17: 393-405.
  • Poleszak E, Wośko S, Serefko A, Szopa A, Wlaź A, Szewczyk B, Nowak G, Wlaź P (2013) Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice. Prog Neuropsychopharmacol Biol Psychiatry 46: 29-35.
  • Quarta D, Ferré S, Solinas M, You ZB, Hockemeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88: 1151-1158.
  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50: 413-492.
  • Raison CL, Miller AH (2013) Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. Mod Trends Pharmacopsychiatri 28: 33-48.
  • Rieger DK, Costa AP, Budni J, Moretti M, Barbosa SG, Nascimento KS, Teixeira EH, Cavada BS, Rodrigues AL, Leal RB (2014) Antidepressant-like effect of Canavalia brasiliensis (ConBr) lectin in mice: Evidence for the involvement of the glutamatergic system. Pharmacol Biochem Behav 122: 53-60.
  • Robson S., Sevigny J., Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2: 409-430.
  • Saitoh M, Shinohara M, Ishii A, Ihara Y, Hirose S, Shiomi M, Kawawaki H, Kubota M, Yamagata T, Miyamoto A, Yamanaka G, Amemiya K, Kikuchi K, Kamei A, Akasaka M, Anzai Y, Mizuguchi M (2015) Clinical and genetic features of acute encephalopathy in children taking theophylline. Brain Dev 37: 463-470.
  • Salvadore G, Viale CI, Luckenbaugh DA, Zanatto VC, Portela LV, Souza DO, Zarate CA Jr, Machado-Vieira R (2010) Increased uric acid levels in drug-naïve subjects with bipolar disorder during a first manic episode. Prog Neuropsychopharmacol Biol Psychiatry 34: 819-821.
  • Schmidt AP, Lara DR, de Faria Maraschin J, da Silveira Perla A, Onofre Souza D (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864: 40-43.
  • Schmidt AP, Tort AB, Souza DO, Lara DR (2008) Guanosine and its modulatory effects on the glutamatergic system. Eur Neuropsychopharmacol 18: 620-622.
  • Schultz SK, Andreasen NC (1999) Schizophrenia. Lancet 353: 1425-1430.
  • Shinohara M, Saitoh M, Nishizawa D, Ikeda K, Hirose S, Takanashi J, Takita J, Kikuchi K, Kubota M, Yamanaka G, Shiihara T, Kumakura A, Kikuchi M, Toyoshima M, Goto T, Yamanouchi H, Mizuguchi M (2013) ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus. Neurology 80: 1571-1576.
  • Singer P, Zhang C, Boison D, Yee BK. (2013) Dysregulation of brain adenosine is detrimental to the expression of conditioned freezing but not general Pavlovian learning. Pharmacol Biochem Behav 104: 80-89.
  • Soronen P, Mantere O, Melartin T, Suominen K, Vuorilehto M, Rytsälä H, Arvilommi P, Holma I, Holma M, Jylhä P, Valtonen HM, Haukka J, Isometsä E, Paunio (2011) P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am J Med Genet B Neuropsychiatr Genet 156B: 435-447.
  • Sperlagh B., Illes P (2007) Purinergic modulation of microglial cell activation. Purinergic Signal 3: 117-127.
  • Stoeckel ME, Uhl-Bronner S, Hugel S, Veinante P, Klein MJ, Mutterer J, Freund-Mercier MJ, Schlichter R (2003) Cerebrospinal fluid-contacting neurons in the rat spinal cord, a γ-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J Comp Neurol 457: 159-174.
  • Urigüen L, García-Fuster MJ, Callado LF, Morentin B, La Harpe R, Casadó V, Lluis C, Franco R, García-Sevilla JA, Meana JJ (2009) Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology (Berl) 206: 313-324.
  • Viikki M, Kampman O, Anttila S, Illi A, Setälä-Soikkeli E, Huuhka M, Mononen N, Lehtimäki T, Leinonen E (2011) P2RX7 polymorphisms Gln460Arg and His155Tyr are not associated with major depressive disorder or remission after SSRI or ECT. Neurosci Lett 493: 127-130.
  • Villar-Menéndez I, Díaz-Sánchez S, Blanch M, Albasanz JL, Pereira-Veiga T, Monje A, Planchat LM, Ferrer I, Martín M, Barrachina M (2014) Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia. J Psychiatr Res 51: 49-59.
  • Wei C, Li W, Chen J (2011) Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. BBA Biomembranes 1808: 1358-1379.
  • Wardas J (2008) Potential role of adenosine A2A receptors in the treatment of schizophrenia. Front Biosci 13: 4071-4096.
  • Watkins J, Collingridge G (1994) Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci 15: 333-342.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p1kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.