Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 58 | 4 | 621-626

Article title

Differences in glutathione S-transferase pi expression in transgenic mice with symptoms of neurodegeneration

Content

Title variants

Languages of publication

EN

Abstracts

EN
Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-PCR and Western blotting. The main changes in GST pi expression were observed in mice with the SODG93A mutation. In SOD1/+ and Cra1/SOD1 transgenics, with the exception of cerebellum, the changes in GST pi-mRNA accompanied those in GST pi protein. In brain cortex of both groups the expression was unchanged at the presymptomatic (age 70 days) but was lower at the symptomatic stage (age 140 days) and at both stages in hippocampus and spinal cord of SOD1/+ but not of Cra1/SOD1 mice compared to age-matched wild-type controls. In cerebellum of the presymptomatic and the symptomatic SOD1/+ mice and presymptomatic Cra1/SOD1 mice, the GST pi-mRNA was drastically elevated but the protein level remained unchanged. In Cra1/+ transgenics there were no changes in GST pi expression in any CNS region both on the mRNA and on the protein level. It can be concluded that the SOD1G93A but not the Dync1h1 mutation significantly decreases detoxification efficiency of GST pi in CNS, however the Dync1h1 mutation reduces the effects caused by the SOD1G93A mutation. Despite similarities in neurological symptoms, the differences in GST pi expression between SOD1/+ and Cra1/+ transgenics indicate a distinct pathogenic entity of these two conditions.

Year

Volume

58

Issue

4

Pages

621-626

Physical description

Dates

published
2011
received
2011-07-29
revised
2011-10-07
accepted
2011-11-02
(unknown)
2011-11-30

Contributors

  • Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
  • Chair and Department of Neurology, Medical University of Warsaw, Warszawa, Poland
author
  • Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
  • Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland

References

  • Al-Chalabi A, Powell JF, Leigh PN (1995) Neurofilaments, free radicals, excitotoxins, and amyotrophic lateral sclerosis. Muscle Nerve 18: 540-545.
  • Awasthi YC, Sharma R, Singhal SS (1994) Human glutathione S-transferases. Int J Biochem 26: 295-308.
  • Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B (1997) Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324: 25-28.
  • Barańczyk-Kuźma A, Kuźma M, Gutowicz G, Kaźmierczak B, Sawicki J (2004) Glutathione S-transferase pi as a target for tricyclic antidepressants in human brain. Acta Biochim Pol 51: 207-212.
  • Beiswanger CM, Diegmann MH, Novak RF, Philbert MA, Grassle TL, Reuhl KR, Lowndes HE (1995) Developmental changes in the cellular distribution of glutathione and glutathione S-transferases in the murine nervous system. Neurotoxicology 16: 425-440.
  • Bernardini S, Bellincampi L, Ballerini S, Federici G, Iori R, Trequattrini A, Ciappi F, Baldinetti F, Bossu P, Caltagirone C (2005) Glutathione S-transferase P1 *C allelic variant increases susceptibility for late-onset Alzheimer disease: association study and relationship with apolipoprotein 4 allele. Clin Chem 51: 944-951.
  • Braunstein KE, Eschbach J, Rona-Voros K, Soylu R, Mikrouli E, Larmet Y, Rene F, De Aguilar JL, Loeffler JP, Muller HP, Bucher S, Kaulisch T, Niessen HG, Tillmanns J, Fischer K, Schwalenstocker B, Kassubek J, Pinchler B, Stiller D, Petersen A, Ludolph AC, Dupuis L (2010) A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowht of structal neurons. Hum Mol Genet 19: 4385-4398.
  • Cookson MS, Reuter VE, Linkov I, Fair WR (1997) Glutathione S-transferase PI (GST-pi) class expression by immunohistochemistry in benign and malignant prostate tissue. J Urol 157: 673-676.
  • Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B (2007) Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J Neurosci 27: 14515-1524.
  • Chung YH, Joo KM, Lim HC, Cho MH, Kim D, Lee WB, Cha CI (2005) Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice. Brain Res 1050: 203-209.
  • Chung YH, Joo KM, Kim D, Kim SS, Kim KY, Lee WB, Cha CI (2008) Immunohistochemical study on the distribution of glycogen synthase kinase 3alpha in the central nervous system of SOD1(G93A) transgenic mice. Neurol Res 30: 926-931.
  • Dal Canto MC, Gurney ME (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human CuZn SOD and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis. Brain Res 676: 25-40.
  • Dupuis L, Fergani A, Braunstein KE, Eschbach J, Holl N, Rene N, Gonzalez De Aguilar JL, Zoerner B, Schwalenstocker B, Ludolph AC, Loeffler JP (2009) Mice with a mutation in the dynein heavy chain 1 gene display sensory neuropathy but lack motor neuron disease. Exp Neurol 215: 146-152.
  • El-Kadi AM, Soura V, Hafezparast M (2007) Defective axonal transport in motor neurodisease. J Neurosci Res 85: 2557-2566.
  • Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, McCluskey L, Xie SX, Lee VM, Trojanowski JQ (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65: 636-641.
  • Gibbons IR (1995) Dynein family of motor proteins: present status and future questions. Cell Motil Cytoskeleton 32: 136-144.
  • Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23: 39-71.
  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Caliendo J, Aleksander DD, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772-1775.
  • Hafezparast M, Klocke R, Ruhrberg C, Marquardt A , Ahmad-Annuar A , Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley JV, Averill S, King RV, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme G, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe de Angelis M, Schiavo DT, Shima G, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300: 808-881.
  • Harada H, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141: 51-59.
  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445-600.
  • Hayes JD, Strange RC (1995) Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res 22: 193-207.
  • Hayes JA, Strange RC (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61: 154-166.
  • Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch, K Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung TM, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25: 444-447.
  • Inoue T, Ishida T, Sugio K, Maehara Y, Sugimachi K (1995) Glutathione S transferase Pi is a powerful indicator in chemotherapy of human lung squamous-cell carcinoma. Respiration 62: 223-227.
  • Jakoby WB (1978) The glutathione S-transferases: a group of multifunctional detoxication protein. Adv Enzymol 46: 383-414.
  • Kieran D, Hafezparast M, Bohnert S, Dick JR, Martin J, Schiaro G (2005) A mutation in dynein rescues axonal transport defect and extends the life span of ALS mice. J Cell Biol 169: 561-567.
  • Kuźma M, Jamrozik Z, Barańczyk-Kuźma (2006) Activity and expression of glutathione S-transferase pi in patients with amyotrophic lateral sclerosis. Clin Chim Acta 364: 217-221.
  • Kuźma-Kozakiewicz M, Kwieciński H (2011) New therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets 15: 127-143.
  • Kuźma-Kozakiewicz M, Usarek E, Barańczyk-Kuźma A (2011) Mice with mutation in dynein heavy chain 1 do not share the same tau expression pattern with mice with SOD1-related motor neuron disease. Neurochem Res 36: 978-985.
  • Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17: 1373-13180.
  • LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascaño J, Tokito M, Van Winkle T, Howland DS, Holzbaur EL (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34: 715-727.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Listowsky I, Abramovitz M, Homma H, Niitsu Y (1988) Intracellular binding and transport of hormones and xenobiotics by glutathione S-transferases. Drug Metab Rev 19: 305-318.
  • Lovell MA, Xie C, Markesbery WR (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer's disease. Neurology 51: 1562-1566.
  • Mannervik B, Awasthi YC, Board PG, Hayes JD, Di Ilio C, Ketterer B, Listowsy R, Morgenstern R, Muramatsu M, Pearson WR, Pickett CB, Sato K, Wildersten M, Wolf CR (1992) Nomenclature for human glutathione transferases. Biochem J 282: 305-306.
  • Mannervik B, Danielson UH (1988) Glutathione transferases - structure and catalytic activity. CRC Crit Rev Biochem 23: 283-337.
  • Mo Z, Gao Y, Cao Y, Gao F, Jian L (2009) An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphism and prostate cancer: a HuGE review. Prostate 69: 662-668.
  • Mulder DW, Kurland LT, Offord KP, Beard CM (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36: 511-517.
  • Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L (2009) Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem 9: 763-777.
  • Samso M, Radermacher M, Frank K, Koonce MP (1988) Structural characterization of a dynein motor domain. J Mol Biol 276: 927-937.
  • Sawicki J, Kuźma M, Barańczyk-Kuźma A (2000) The effect of serotonin, its precursors and metabolites on brain glutathione-S-transferase. Neurochem Res 26: 469-472.
  • Shang W, Liu WH, Zhao XH, Sun JQ, Bi JZ, Chi ZF (2008) Expressions of glutathione S-transferase alpha, mu, and pi in brains of medically intractable epileptic patients. BMC Neurosci 9: 67-71.
  • Rowland LP, ed (1995) Hereditary and acquired motor neuron diseases. In: Merritt's Textbook of Neurology, Williams & Wilkins, Baltimore, pp. 742-749.
  • Teuchert M, Fischer D, Schwalenstoecker B, Habisch HJ, Bockers TM, Ludolph AC (2006) A dynein mutation attenuates motor neuron degeneration in SOD1G93A mice. Exp Neurol 198: 271-274.
  • Terro F, Lesort M, Viader F, Ludolph A, Hugon J (1996) Antioxidant drugs block in vitro the neurotoxicity of CSF from patients with amyotrophic lateral sclerosis. Neuroreport 7: 1970-1972.
  • Tew KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54: 4313-4320.
  • Tew KD, Ronai Z (1999) GST function in drug and stress response. Drug Resist Updat 2: 143-147.
  • Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Nat Acad Sci USA 93: 3155-3160.
  • Usarek E, Gajewska B, Kaźmierczak B, Kuźma M, Dziewulska D, Barańczyk-Kuźma A (2005) A study of glutathione S-transferase pi expression in central nervous system of subject with amyotrophic lateral sclerosis using RNA extraction from formalin-fixed, paraffin-embedded material. Neurochem Res 30: 1003-1007.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv58p621kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.