Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 54 | 1 | 143-150

Article title

Comparison of the localization and post-translational modification of Campylobacter coli CjaC and its homolog from Campylobacter jejuni, Cj0734c/HisJ

Content

Title variants

Languages of publication

EN

Abstracts

EN
Campylobacter is an asaccharolytic microorganism which uses amino acids as a source of carbon and energy. CjaC/HisJ is a ligand-binding protein, a component of the ABC transport system. Campylobacter CjaC/HisJ is post-translationally modified by glycosylation. The number of glycosylation motifs present in the CjaC protein is species-specific. C. coli CjaC has two and C. jejuni one motif (E/DXNYS/T) which serves as a glycan acceptor. Although the two C. coli CjaC motifs have identical amino-acid sequences they are not glycosylated with the same efficiency. The efficacy of CjaC glycosylation in Escherichia coli containing the Campylobacter pgl locus is also rather low compared to that observed in the native host. The CjaC localization is host-dependent. Despite being a lipoprotein, CjaC is recovered in E. coli from the periplasmic space whereas in Campylobacter it is anchored to the inner membrane.

Year

Volume

54

Issue

1

Pages

143-150

Physical description

Dates

published
2007
received
2006-10-11
revised
2007-01-30
accepted
2007-02-19
(unknown)
2007-03-09

Contributors

  • Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Warszawa, Poland
  • Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Warszawa, Poland
  • Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Warszawa, Poland

References

  • Ames GF, Prody C, Kustu S (1984) Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160: 1181-1183.
  • Bacon DJ, Alm RA, Hu L, Hickey TE, Ewing CP, Batchelor RA, Trust TJ, Guerry P (2002) DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun 70: 6242-6250.
  • Blaser MJ, Hopkins JA, Berka RM, Vasil ML, Wang WL (1983) Identification and characterization of Campylobacter jejuni outer membrane proteins. Infect Immun 42: 276-284.
  • Bolla JM, De E, Dorez A, Pages JM (2000) Purification, characterization and sequence analysis of Omp50, a new porin isolated from Campylobacter jejuni. Biochem J 352 (Pt 3): 637-643.
  • Filip C, Fletcher G, Wulff JL, Earhart CF (1973) Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115: 717-722.
  • Fouts DE, Mongodin EF, Mandrell RE et al. (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3: e15. Epub 2005 Jan 2004.
  • Garvis SG, Puzon GJ, Konkel ME (1996) Molecular characterization of a Campylobacter jejuni 29-kilodalton periplasmic binding protein. Infect Immun 64: 3537-3543.
  • Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52: 471-484.
  • Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL (2001) JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39: 1225-1236.
  • Kelly DJ (2001) The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori. Symp Ser Soc Appl Microbiol 16S-24S.
  • Konkel ME, Gray SA, Kim BJ, Garvis SG, Yoon J (1999) Identification of the enteropathogens Campylobacter jejuni and Campylobacter coli based on the cadF virulence gene and its product. J Clin Microbiol. 37: 510-517.
  • Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA (1985) A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152: 592-596.
  • Kowarik M, Young NM, Numao S et al. (2006) Definition of the bacterial N-glycosylation site consensus sequence. Embo J 25: 1957-1966.
  • Larsen JC, Szymanski C, Guerry P (2004) N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J Bacteriol 186: 6508-6514.
  • Moore JE, Corcoran D, Dooley JS et al. (2005) Campylobacter Vet Res 36: 351-382.
  • Nachamkin I, Allos BM, Ho T (1998) Campylobacter species and Guillain-Barre syndrome. Clin Microbiol Rev 11: 555-567.
  • Nita-Lazar M, Wacker M, Schegg B, Amber S, Aebi M (2005) The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15: 361-367.
  • Parkhill J, Wren BW, Mungall K et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668.
  • Pawelec D, Jakubowska-Mroz J, Jagusztyn-Krynicka EK (1998) Campylobacter jejuni 72Dz/92 cjaC gene coding 28 kDa immunopositive protein, a homologue of the solute-binding components of the ABC transport system. Lett Appl Microbiol 26: 69-76.
  • Pawelec DP, Korsak D, Wyszynska AK, Rozynek E, Popowski J, Jagusztyn-Krynicka EK (2000) Genetic diversity of the Campylobacter genes coding immunodominant proteins. FEMS Microbiol Lett 185: 43-49.
  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  • Skirrow MB, Blaser MJ (2000) Clinical aspects of Campylobacter infection. Campylobacter (Nachamkin I, Blaser MJ, Tompkins LS, eds) 2nd edn, pp 69-89. ASM Press, Washington.
  • Swartz MN (2002) Human diseases caused by foodborne pathogens of animal origin. Clin Infect Dis 34: (Suppl 3): S111-122.
  • Taylor DE (1992) Genetics of Campylobacter and Helicobacter. Annu Rev Microbiol 46: 35-64.
  • Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1693: 5-13.
  • Velayudhan J, Kelly DJ (2002) Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148: 685-694.
  • Velayudhan J, Jones MA, Barrow PA, Kelly DJ (2004) l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect Immun 72: 260-268.
  • Wacker M, Linton D, Hitchen PG et al. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298: 1790-1793.
  • Wassenaar TM, Fry BN, van der Zeijst BA (1993) Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132: 131-135.
  • Woolhouse ME (2002) Population biology of emerging and re-emerging pathogens. Trends Microbiol 10: S3-7.
  • Yao R, Alm RA, Trust TJ, Guerry P (1993) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127-130.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv54p143kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.