Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 52 | 1 | 35-43

Article title

The Obg subfamily of bacterial GTP-binding proteins: essential proteins of largely unknown functions that are evolutionarily conserved from bacteria to humans.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Members of the Obg subfamily of small GTP-binding proteins (called Obg, CgtA, ObgE or YhbZ in different bacterial species) have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Although serious changes in phenotypes are observed in mutant bacteria devoid of Obg or its homologues, specific roles of these GTP-binding proteins remain largely unknown. Recent genetic and biochemical studies, as well as determination of the structures of Obg proteins from Bacillus subtilis and Thermus thermophilus, shed new light on the possible functions of the members of the Obg subfamily and may constitute a starting point for the elucidation of their exact biological role.

Year

Volume

52

Issue

1

Pages

35-43

Physical description

Dates

published
2005
received
2004-07-07
accepted
2004-09-07

Contributors

author
  • Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
  • Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland

References

  • Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod M-L, Loferer H. (1998) A genome based approach for the identification of essential bacterial genes. Nat Biotechnol.; 16: 851-6.
  • Britton RA, Powell BS, Court DL, Lupski JR. (1997) Characterization of mutations affecting the Escherichia coli essential GTPase Era that suppress two temperature-sensitive dnaG alleles. J Bacteriol.; 179: 4575-82.
  • Britton RA, Powell BS, Dasgupta S, Sun Q, Margolin W, Lupski JR, Court DL. (1998) Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol Microbiol.; 27: 739-50.
  • Buglino J, Shen V, Hakimian P, Lima CD. (2002) Structural and biochemical analysis of the Obg GTP binding protein. Structure.; 10: 1581-92.
  • Caldon CE, March PE. (2003) Function of the universally conserved bacterial GTPases. Curr Opin Microbiol.; 6: 135-9.
  • Cashel M, Gentry DR, Hernandez VJ, Vinella D. (1996) The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt FC, Curtiss III J, Ingraham L, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE, eds. pp 1458-96, Washington, DC: American Society for Microbiology.
  • Chen X, Court DL, Ji X. (1999) Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA.; 96: 8396-401.
  • Czyż A, Jasiecki J, Bogdan A, Szpilewska H, Wegrzyn G. (2000) Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments. Appl Environ Microbiol.; 66: 599-605.
  • Czyż A, Zielke R, Konopa G, Węgrzyn G. (2001) A Vibrio harveyi insertional mutant in the cgtA (obg, yhbZ) gene, whose homologues are present in diverse organisms ranging from bacteria to humans and are essential genes in many bacterial species. Microbiology.; 147: 183-191.
  • Czyż A, Szpilewska H, Dutkiewicz R, Kowalska W, Biniewska-Godlewska A, Węgrzyn G. (2002) Comparison of the Ames test and a newly developed assay for detection of mutagenic pollution of marine environments. Mutat Res.; 519: 67-74.
  • Czyż A, Kowalska W, Węgrzyn G. (2003) Vibrio harveyi mutagenicity assay as a preliminary test for detection of mutagenic pollution of marine water. Bull Environ Contam Toxicol.; 70: 1065-70.
  • Datta K, Skidmore JM, Pu K, Maddock JR. (2004) The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels. Mol Microbiol.; 54: 1379-92.
  • Dutkiewicz R, Słomińska M, Węgrzyn G, Czyż A. (2002) Overexpression of the cgtA (yhbZ, obgE) gene, coding for an essential GTP-binding protein, impairs the regulation of chromosomal functions in Escherichia coli. Curr Microbiol.; 45: 440-5.
  • Foti JJ, Schienda J, Sutera VA Jr, Lovett ST. (2005) A bacterial G protein-mediated response to replication arrest. Mol Cell.; 17: 549-60.
  • Ishikawa K, Azuma S, Ikawa S, Morishita Y, Gohda J, Akiyama T, Semba K, Inoue J. (2003) Cloning and characterization of Xenopus laevis drg2, a member of the developmentally regulated GTP-binding protein subfamily. Gene.; 322: 105-12.
  • Kasai K, Usami S, Yamada T, Endo Y, Ochi K, Tozawa Y. (2002) A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. Nucleic Acids Res.; 30: 4985-92.
  • Kobayashi G, Moriya S, Wada C. (2001) Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol Microbiol.; 41: 1037-51.
  • Kok J, Trach KA, Hoch JA. (1994) Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J Bacteriol.; 176: 7155-60.
  • Kukimoto-Niino M, Murayama K, Inoue M, Terada T, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S. (2004) Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol.; 337: 761-70.
  • Leipe DD, Wolf YI, Koonin EV, Aravind L. (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol.; 317: 41-72.
  • Lerner CG, Inouye M. (1991) Pleiotropic changes resulting from depletion of Era, an essential GTP-binding protein in Escherichia coli. Mol Microbiol.; 5: 951-7.
  • Lin B, Maddock JR. (2001) The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor. FEBS Lett.; 489: 108-11.
  • Lin B, Covalle KL, Maddock JR. (1999) The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol.; 181: 5825-32.
  • Lin B, Skidmore JM, Bhatt A, Pfeffer SM, Pawloski L, Maddock JR. (2001) Alanine scan mutagenesis of the switch I domain of the Caulobacter crescentus CgtA protein reveals critical amino acids required for in vivo function. Mol Microbiol.; 39: 924-34.
  • Lin B, Thayer DA, Maddock JR. (2004) The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit. J Bacteriol.; 186: 481-9.
  • Maddock J, Bhatt A, Koch M, Skidmore J. (1997) Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins. J Bacteriol.; 179: 6426-31.
  • Mechold U, Murphy H, Brown L, Cashel M. (2002) Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol.; 184: 2878-88.
  • Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, Moriya S, Ogasawara N. (2002) Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology.; 148: 3539-52.
  • Okamoto S, Ochi K. (1998) An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol.; 30: 107-9.
  • Sayed A, Matsuyama S, Inouye M. (1999) Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem Biophys Res Commun.; 264: 51-4.
  • Scott JM, Haldenwang WG. (1999) Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor σB. J Bacteriol.; 181: 4653-60.
  • Scott JM, Ju J, Mitchell T, Haldenwang WG. (2000) The Bacillus subtilis GTP binding protein Obg and regulators of the σB stress response transcription factor cofractionate with ribosomes. J Bacteriol.; 182: 2771-7.
  • Sikora-Borgula A, Słomińska M, Trzonkowski P, Zielke R, Myśliwski A, Węgrzyn G, Czyż A. (2002) A role for the common GTP-binding protein in coupling of chromosome replication to cell growth and cell division. Biochem Biophys Res Commun.; 292: 333-8.
  • Słomińska M, Konopa G, Węgrzyn G, Czyż A. (2002) Impaired chromosome partitioning and synchronisation of DNA replication initiation in a Vibrio harveyi insertional mutant in the cgtA gene coding for a common GTP-binding protein. Biochem J.; 362: 579-84.
  • Sprang SR. (1997) G protein mechanisms: insights from structural analysis. Annu Rev Biochem.; 66: 639-78.
  • Tan J, Jakob U, Bardwell JC. (2002) Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol.; 184: 2692-8.
  • Trach K, Hoch JA. (1989) The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol.; 171: 1362-71.
  • Ulanowska K, Sikora A, Węgrzyn G, Czyż A. (2003) Role of the cgtA gene function in DNA replication of extrachromosomal elements in Escherichia coli. Plasmid.; 50: 45-52.
  • van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JD. (2000) Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc Natl Acad Sci USA.; 97: 3747-52.
  • Vidwans SJ, Ireton K, Grossman AD. (1995) Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J Bacteriol.; 177: 3308-11.
  • Węgrzyn G, Czyż A. (2003) Detection of mutagenic pollution of natural environment using microbiological assays. J Appl Microbiol.; 95: 1175-81.
  • Wittinghofer A. (2002) Obg, a G domain with a beautiful extension. Structure.; 10: 1471-2.
  • Wout P, Pu K, Sullivan SM, Reese V, Zhou S, Lin B, Maddock JR. (2004) The Escherichia coli GTPase CgtAC cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol.; 186: 5249-57.
  • Zielke R, Sikora A, Dutkiewicz R, Węgrzyn G, Czyż A. (2003) Involvement of the cgtA gene function in stimulation of DNA repair in Escherichia coli and Vibrio harveyi. Microbiology.; 149: 1763-70.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv52i1p35kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.