Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2004 | 51 | 2 | 493-531

Article title

Xanthine, xanthosine and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways.

Content

Title variants

Languages of publication

EN

Abstracts

EN
The 6-oxopurine xanthine (Xan, neutral form 2,6-diketopurine) differs from the corresponding 6-oxopurines guanine (Gua) and hypoxanthine (Hyp) in that, at physiological pH, it consists of a ≈ 1:1 equilibrium mixture of the neutral and monoanionic forms, the latter due to ionization of N(3)-H, in striking contrast to dissociation of the N(1)-H in both Gua and Hyp at higher pH. In xanthosine (Xao) and its nucleotides the xanthine ring is predominantly, or exclusively, a similar monoanion at physiological pH. The foregoing has, somewhat surprisingly, been widely overlooked in studies on the properties of these compounds in various enzyme systems and metabolic pathways, including, amongst others, xanthine oxidase, purine phosphoribosyltransferases, IMP dehydrogenases, purine nucleoside phosphorylases, nucleoside hydrolases, the enzymes involved in the biosynthesis of caffeine, the development of xanthine nucleotide-directed G proteins, the pharmacological properties of alkylxanthines. We here review the acid/base properties of xanthine, its nucleosides and nucleotides, their N-alkyl derivatives and other analogues, and their relevance to studies on the foregoing. Included also is a survey of the pH-dependent helical forms of polyxanthylic acid, poly(X), its ability to form helical complexes with a broad range of other synthetic homopolynucleotides, the base pairing properties of xanthine in synthetic oligonucleotides, and in damaged DNA, as well as enzymes involved in circumventing the existence of xanthine in natural DNA.

Year

Volume

51

Issue

2

Pages

493-531

Physical description

Dates

published
2004
received
2004-05-09

Contributors

  • Department of Biophysics, Institute of Experimental Physics, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warszawa, Poland
  • Department of Biophysics, Institute of Experimental Physics, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warszawa, Poland
author
  • Department of Biophysics, Institute of Experimental Physics, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warszawa, Poland

References

  • Adams BL, Morgan M, Muthukrishnan S, Hecht SM, Shatkin AJ. (1978) The effect of cap analogs on reovirus mRNA binding to wheat germ ribosomes. Evidence for enhancement of ribosomal binding via a preferred cap conformation. J Biol Chem.; 253: 2589-95.
  • Albert A, Brown D. (1954) Purine studies. Part I. Stability to acid and alkali. Solubility. Ionization. Comparison with pteridines. J Chem Soc.; 2060-71.
  • Arnott S, Chandrasekaran R, Day AW, Puigjaner LC, Watts L. (1981) Double-helical structures for polyxanthylic acid. J Mol Biol.; 149: 489-505.
  • Aronsson H, Combe J, Jarvis P. (2003) Unusual nucleotide-binding properties of the chloroplast protein import receptor, atToc33. FEBS Lett.; 544: 79-85.
  • Ashihara H, Crozier A. (2001) Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci.; 6: 407-13.
  • Ashihara H, Suzuki T. (2004) Distribution and biosynthesis of caffeine in plants. Front Biosci.; 9: 1864-76.
  • Bergmann F, Dickstein S. (1955) The relationship between spectral shifts and structural changes in uric acids and related compounds. J Am Chem Soc.; 77: 691-6.
  • Bergmann F, Levene L. (1976) Oxidation of N-methyl substituted hypoxanthines, xanthines, purine-6,8-diones and the corresponding 6-thiooxo derivatives by bovine milk xanthine oxidase. Biochim Biophys Acta.; 429: 672-88.
  • Bessman MJ, Frick DN, O'Handley SF. (1996) The MutT proteins or Nudix hydrolases, a family of versatile, widely distributed, housecleaning enzymes. J Biol Chem.; 271: 25059-62.
  • Bezirjian KhO, Kocharian ShM, Akopyan ZhI. (1986) Isolation of a hexameric form of purine nucleoside phosphorylase II from E. coli. Comparative study of trimeric and hexameric forms of the enzyme. Biokhimiia.; 51: 1085-92.
  • Bowen TL, Lin WC, Whitman WB. (1996) Characterization of guanine and hypoxanthine phosphoribosyltransferases in Methanococcus voltae. J Bacteriol.; 178: 2521-6.
  • Brocklehurst K. (1994) A sound basis for pH-dependent kinetic studies on enzymes. Protein Eng.; 7: 291-9.
  • Bzowska A, Kulikowska E, Shugar D. (2000) Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther.; 88: 349-425.
  • Canyuk B, Focia PJ, Eakin AE. (2001) The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography. Biochemistry.; 40: 2754-65.
  • Caulfield JL, Wishnok JS, Tannenbaum SR. (1998) Nitric oxide induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem.; 273: 12689-95.
  • Cavalieri L, Fox JJ, Stone A, Chang N. (1954) On the nature of xanthine and substituted xanthines in solution. J Am Chem Soc.; 76: 1119-22.
  • Christensen JJ, Rytting JH, Izatt RM. (1970) Thermodynamic pK, Ho, So, and Cpo values for proton dissociation from several purines and their nucleosides in aqueous solution. Biochemistry.; 9: 4907-13.
  • Chung JH, Back JH, Park YI, Han YS. (2001) Biochemical characterization of a novel hypoxanthine/xanthine dNTP pyrophosphatase from Methanococcus jannaschii. Nucleic Acids Res.; 29: 3099-107.
  • Chung JH, Park H-Y, Lee JH, Jang Y. (2002) Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli. J Biochem Mol Biol.; 35: 403-8.
  • Craig SP III, Eakin AE. (2000) Purine phosphoribosyltransferases. J Biol Chem.; 275: 20231-4
  • Daly JW. (2000) Alkylxanthines as research tools. J Auton Nerv Syst.; 81: 44-52.
  • Datta NS, Shewach DS, Hurley MC, Mitchell BS, Fox IH. (1989) Human T-lymphoblast deoxycytidine kinase: Purification and properties. Biochemistry.; 28: 114-23.
  • de Azevedo Jr WF, dos Santos GC, dos Santos DM, Olivieri JR, Canduri F, Silva RG, Basso LA, Renard G, da Fonseco IO, Mendes MA, Palma MS, Santos DS. (2003) Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem Biophys Res Commun.; 309: 923-8.
  • Eads JC, Scapin G, Xu Y, Grubmeyer C, Sacchettini JC. (1994) The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell.; 78: 325-34.
  • el Kouni MH. (2003) Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol Ther.; 99: 283-309.
  • Elgemeie GH. (2003) Thioguanine, mercaptopurine: their analogues and nucleosides as antimetabolites. Curr Pharm Des.; 9: 2627-42.
  • Eritja R, Horowitz DM, Walker PA, Ziehler-Martin JP, Boosalis MS, Goodman MF, Itakura K, Kaplan BE. (1986) Synthesis and properties of oligonucleotides containing 2'-deoxynebularine and 2'-deoxyxanthosine. Nucleic Acids Res.; 14: 8135-53.
  • Fikus M, Shugar D. (1969) Properties of poly-xanthylic acid and its reactions with potentially complementary homopolynucleotides. Acta Biochim Polon.; 16: 55-82.
  • Foley LH, Wang P, Dunten P, Ramsey G, Gubler M-L, Wertheimer SJ. (2003a) Modified 3-alkyl-1,8-dibenzylxanthines as GTP-competitive inhibitors of phosphoenolpyruvate carboxykinase. Bioorg Med Chem Lett.; 13: 3607-10.
  • Foley LH, Wang P, Dunten P, Ramsey G, Gubler M-L, Wertheimer SJ. (2003b) X-Ray structures of two xanthine inhibitors bound to PEPCK and N-3 modifications of substituted 1,8-dibenzylxanthines. Bioorg Med Chem Lett.; 13: 3871-34.
  • Franchetti P, Grifantini M. (1999) Nucleoside and non-nucleoside IMP dehydrogenase inhibitors as antitumour and antiviral agents. Curr Med Chem.; 6: 599-614.
  • Friedkin M. (1952) Enzymatic synthesis of deoxyxanthosine by the action of xanthosine phosphorylase in mammalian tissue. J Am Chem Soc.; 74: 112-5.
  • Geyer CR, Battersby TR, Benner SA. (2003) Nucleobase pairing in expanded Watson- Crick-like genetic information systems. Structure.; 11: 1485-98.
  • Gille A, Seifert R. (2004) Xanthine nucleotide-specific G-protein alpha-subunits: a novel approach for the analysis of G-protein-mediated signal transduction. Naunyn Schmiedebergs Arch Pharmacol.; 369: 141-50.
  • Gille A, Wenzel-Seifert K, Doughty MB, Seifert R. (2003) GDP affinity and order state of the catalytic site are critical for function of xanthine nucleotide-selective GαS proteins. J Biol Chem.; 278: 7822-8.
  • Giorgelli F, Bottai C, Mascia L, Scolozzi C, Camici M, Ipata PL. (1997) Recycling of alpha-D-ribose 1-phosphate for nucleoside interconversion. Biochim Biophys Acta.; 1335: 6-22.
  • Hammer-Jespersen K. (1983) Nucleoside catabolism. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Munch-Petersen A. ed, pp 203-58. Academic Press, London.
  • Hammer-Jespersen K, Buxton RS, Hansen TD. (1980) A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine. Mol Gen Genet.; 179: 341-8.
  • Hayallah AM, Sandoval-Ramirez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Muller CE. (2002) 1,8-Disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem.; 45: 1500-10.
  • He B, Quing H, Kow W. (2000) Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat Res.; 459: 109-14.
  • Héroux A, White EL, Ross LJ, Borhani DW. (1999a) Crystal structures of the Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase-GMP and -IMP complexes: comparison of purine binding interactions with the XMP complex. Biochemistry.; 38: 14485-94.
  • Héroux A, White EL, Ross LJ, Davis RL, Borhani DW. (1999b) Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg2+ ions bound: insights into the catalytic mechanism. Biochemistry.; 38: 14495-506.
  • Hille R. (1996) The mononuclear molybdenum enzymes. Chem Rev.; 96: 2757-816.
  • Hwang KY, Chung JH, Kim S-H, Han YS, Cho Y. (1999) Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat Struct Biol.; 6: 691-6.
  • Johnson GG, Nash SA. (1983) Hypoxanthine-guanine phosphoribosyltransferase in human erythroid cells: Properties of the isozymes. Biochem Genet.; 21: 213-26.
  • Kamiya H, Shimizu M, Suzuki M, Inoue H, Ohtsuka E. (1992) Mutation induced by deoxyxanthosine in codon 12 of a synthetic c-Ha-ras gene. Nucleosides Nucleotides.; 11: 247-60.
  • Kang C, Sun N, Honzatko RB, Fromm HJ. (1994) Replacement of Asp333 with Asn by site-directed mutagenesis changes the substrate specificity of Escherichia coli adenylosuccinate synthetase from guanosine-5'-triphosphate to xanthosine-5'-triphosphate. J Biol Chem.; 269: 24046-9.
  • Kato M, Kanehara T, Shimizu H, Suzuki T, Gillies FM, Crozier A, Ashira H. (1996) Caffeine biosynthesis in young leaves of Camellia sinensis: In vitro studies on N-methyltransferase activity invloved in the conversion of xanthosine to caffeine. Physiol Plant.; 98: 629-36.
  • Kato M, Mizuno K. (2004) Caffeine synthase and related methyltransferases in plants. Frontiers Biosci.; 9: 1833-42.
  • Kim JH, Ryan MG, Knaut H, Hille R. (1996) The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence. J Biol Chem.; 271: 6771-80.
  • Kline PC, Schramm VL. (1993) Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry.; 32: 13212-9.
  • Koszalka GW, Vanhooke J, Short SA, Hall WW. (1988) Purification and properties of inosine-guanosine phosphorylase from Escherichia coli K-12. J Bacteriol.; 170: 3493-8.
  • Krenitsky TA, Elion GB, Henderson AM, Hitchings GH. (1968) Inhibition of human purine nucleoside phosphorylase. Studies with intact erythrocytes and the purified enzyme. J Biol Chem.; 243: 2876-81.
  • Kulikowska E, Bzowska A, Wierzchowski J, Shugar D. (1986) Properties of two unusual, and fluorescent substrates of purine nucleoside phosphorylase: 7-methylguanosine and 7-methylinosine. Biochim Biophys Acta.; 874: 355-63.
  • Lesyng B, Marck C, Saenger W. (1984) The crystal structure of anhydrous xanthosine displays intramolecular O(2')H-O(3')H hydrogen bond. Z Naturforsch.; 39: 720-4.
  • Liaw YC, Chern JW, Lin GS, Wang AHJ. (1992) Unusual conformational flexibility in N1-substituted uncommon purine nucleosides. Crystal structure of 1-allyl-isoguanosine and 1-allyl-xanthosine. FEBS Lett.; 297: 4-8.
  • Lichtenberg D, Bergmann F, Neiman Z. (1971) Tautomeric forms and ionization processes in xanthine and its N-methyl derivatives. J Chem Soc (C).; 1676-82.
  • Lichtenberg D, Bergmann F, Neiman Z. (1972) Tautomerism and ionization processes in 6-thioxanthine and its N-methyl derivatives. J Chem Soc Perkin II.; pp 1676-81.
  • Lin S, McLennan AG, Ying K, Wang Z, Gu S, Jin H, Wu C, Liu W, Yuan Y, Tang R, Xie Y, Mao Y. (2001) Cloning, expression and characterization of a human inosine triphosphate pyrophosphatase encoded by the ITPA gene. J Biol Chem.; 276: 18695-701.
  • Lindahl T. (1993) Instability and decay of the primary structure of DNA. Nature.; 362: 709-15.
  • Marcotrigiano J, Gingras AC, Sonnenberg N, Burley SK. (1997) Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell.; 89: 951-61.
  • Markham GD, Bock CL, Schalk-Hihi C. (1999) Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Biochemistry.; 38: 4433-40.
  • Michelson AM, Monny C. (1966) Polynucleotide analogues. IX. Polyxanthylic acid. Biochim Biophys Acta.; 129: 460-74.
  • Mizuno H, Fujiwara T, Tomita K. (1969) The crystal and molecular structure of the sodium salt of xanthine. Bull Chem Soc Jpn.; 42: 3099-105.
  • Mizuno K, Kato M, Irino F, Yoneyama N, Fujimura T, Ashihara H. (2003) The first commited step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L). FEBS Lett.; 547: 56-60.
  • Muller CE, Shi D, Manning M Jr, Daly JW. (1993) Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships as adenosine receptors. J Med Chem.; 36: 3341-9.
  • Nakano T, Terato H, Asagoshi K, Masaoka A, Mukuta M, Ohyama Y, Suzuki T, Makino K, Ide H. (2003) DNA-protein cross-link formation mediated by oxanine. A novel genotoxic mechanism of nitric oxide induced DNA damage. J Biol Chem.; 278: 25264-72.
  • Neer EJ. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell.; 80: 249-57.
  • Negishi O, Ozawa T, Imagawa H. (1985) Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis. Agric Biol Chem.; 49: 887-90.
  • Nemeti B, Csanaky I, Gregus Z. (2003) Arsenate reduction in human erythrocytes and rats - testing the role of purine nucleoside phosphorylase. Toxicol Sci.; 74: 22-31.
  • Nguyen T, Brunson S, Crespi CL, Penman DW, Tannenbaum SR. (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA.; 89: 3030-4.
  • Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wislouch-Cieszynska A, Dadlez M, Gingras A-C, Mak P, Darzynkiewicz E, Sonnenberg N, Burley K, Stolarski R. (2002a) Biophysical studies of eIF4E cap-binding protein: Recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol.; 319: 615-35.
  • Niedzwiecka A, Stepinski J, Darzynkiewicz E, Sonnenberg N, Stolarski R. (2002b) Positive heat capacity change upon specific binding of translation initiation factor eIF4E to mRNA 5' cap. Biochemistry.; 41: 12140-8.
  • Ogawa M, Herai Y, Koizumi N, Kusano T, Sano H. (2001) 7-Methylxanthine methyltransferase of coffee plants: gene isolation and enzymatic properties. J Biol Chem.; 276: 8213-8.
  • Ogston AG. (1935) The constitution of the purine nucleosides. Part III. Potentiometric determination of the dissociation constants of methylated xanthines. J Chem Soc.; 1376-9.
  • Olsen AS, Milman G. (1974) Chinese hamster hypoxanthine-guanine phosphoribosyltransferase. Purification, structural, and catalytic properties. J Biol Chem.; 249: 4030-7.
  • Ono Y, Ikeda K, Wei MX, Harsh GR 4th, Tamiya T, Chiocca EA. (1997) Regression of experimental brain tumours with 6-thioxanthine and Escherichia coli gpt gene therapy. Hum Gene Ther.; 8: 2043-55.
  • Pankiewicz KW. (2001) Inhibitors of inosine monophosphate dehydrogenase as potential chemotherapeutic agents. Expert Opin Ther Patents.; 11: 1161-70.
  • Petersen C, Moller LB. (2001) The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. J Biol Chem.; 276: 884-94.
  • Pfefferkorn ER, Bzik DJ, Honsinger CP. (2001) Toxoplasma gondii: mechanism of the parasitostatic action of 6-thioxanthine. Exp Parasitol.; 99: 235-43.
  • Pfleiderer W. (1961) Zur Methylierung des 9-Methyl-xanthins. Ann Chem.; 647: 161-6.
  • Pfleiderer W, Nübel G. (1961) Zur Struktur des Xanthins und Seiner N-Methyl-xanthin-derivate. Ann Chem.; 647: 155-60.
  • Piccirilli JA, Krauch T, Moroney SE, Benner SA. (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature.; 343: 33-7.
  • Pitera JW, Munagala NR, Wang CC, Kollman PA. (1999) Understanding substrate specificity in human and parasite phosphoribosyltransferases through calculation and experiment. Biochemistry.; 38: 10298-306.
  • Poznanski J, Kierdaszuk B, Shugar D. (2003) Structural properties of the neutral and monoanionic forms of xanthosine, highly relevant to their substrate properties with various enzyme systems. Nucleosides Nucleotides Nucleic Acids.; 22: 249-63.
  • Pugmire MJ, Ealick SE. (2002) Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem J.; 361: 1-25.
  • Radabaugh TR, Sampayo-Reyes A, Zakharyan RA, Aposhian HV. (2002) Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems. Chem Res Toxicol.; 15: 692-8.
  • Rastelli G, Costantino L, Albasini A. (1997) A model of the interaction of substrates and inhibitors with xanthine oxidase. J Am Chem Soc.; 119: 3007-16.
  • Remin M, Darzynkiewicz E, Dworak A, Shugar D. (1976) Proton magnetic resonance studies of the effects of sugar hydroxyl dissociation on nucleoside conformation. Arabinosyl nucleosides with an intramolecular hydrogen bond between the pentose O(5') and O(2'). J Am Chem Soc.; 98: 367-76.
  • Roberts MF, Waller GR. (1979) N-Methyltransferases and 7-methyl-N9-nucleoside hydrolase activity in Coffea arabica and the biosynthesis of caffeine. Phytochemistry.; 18: 451-5.
  • Rogstad KN, Jang YH, Sowers LC, Goddard WA III. (2003) First principles calculations of the pKa values and tautomers of isoguanine and xanthine. Chem Res Toxicol.; 16: 1455-62.
  • Rosen BP. (2002) Biochemistry of arsenic detoxification. FEBS Lett.; 529: 86-92.
  • Rousseau E, LaDine J, Liu Q-Y, Meissner G. (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys.; 267: 75-86.
  • Roy KB, Miles HT. (1983) Tautomerism and ionization of xanthosine. Nucleosides Nucleotides.; 2: 231-42.
  • Roy KB, Frazier J, Miles HT. (1979) Polyxanthylic acid: Structures of the ordered forms. Biopolymers.; 18: 3077-87.
  • Roy KB, Frazier J, Miles HT. (1983) Interaction of poly(X) with poly(U): alkali metal ion specificity suggests a four-stranded helix. Biopolymers.; 22: 2021-34.
  • Sau AK, Mondal MS, Mitra S. (2000) Effect of pH and temperature on the reaction of milk xanthine oxidase with 1-methylxanthine. J Chem Soc Dalton Trans.; 3688-92.
  • Schouten KA, Weiss B. (1999) Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutation Res.; 435: 245-54.
  • Schulthess B, Morath P, Baumann TW. (1996) Caffeine biosynthesis starts with the metabolically channelled formation of 7-methyl-XMP - a new hypothesis. Phytochemistry.; 41: 169-75.
  • Seeger C, Poulsen C, Dandanell G. (1995) Identification and characterization of genes (xapA, xapB and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol.; 177: 5506-16.
  • Seela F, Driler H, Liman U. (1985) 7-Deaza-isotere von 2'-Desoxyxanthosin und 2-Desoxyspongosin - Syntese via Glycosylierung von 2,4-Dichlor-7H-pyrrolo[2,3-d]pyrimidin. Liebigs Ann Chem.; 312-20.
  • Sekiguchi M, Tsuzuki, T. (2002) Oxidative nucleotide damage: consequences and prevention. Oncogene.; 21: 8895-904.
  • Shamim MT, Ukena D, Padgett WL, Daly JW. (1989) Effects of 8-phenyl and 8-cycloalkyl substituents on the activity of mono-, di- and trisubstituted alkylxanthines with substitutions at the 1-, 3-, and 7-positions. J Med Chem.; 32: 1231-7.
  • Shi W, Li CM, Tyler PC, Furneaux RH, Cahill SM, Girvin ME, Grubmeyer C, Schramm VL, Almo SC. (1999a) The 2.0 Å structure of malarial purine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Biochemistry.; 38: 9872-80.
  • Shi W, Li CM, Tyler PC, Furneaux RH, Grubmeyer C, Schramm VL, Almo SC. (1999b) The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat Struct Biol.; 6: 588-93.
  • Shugar D, Psoda A. (1990) Numerical data and functional relationships in science and technology. In Biophysics of Nucleic Acids, Landoldt-Bornstein New Series VII/Id. Saenger W. ed, pp 308-48. Springer-Verlag, Berlin.
  • Somoza JR, Chin MS, Focia PJ, Wang CC, Fletterick RJ. (1996) Crystal structure of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from the protozoan parasite Tritrichomonas foetus. Biochemistry.; 35: 7032-40.
  • Stoychev G, Kierdaszuk B, Shugar D. (2002) Xanthosine and xanthine: Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems. Eur J Biochem.; 269: 4048-57.
  • Subbayya INS, Sukumaran S, Shivashankar K, Balaram H. (2000) Unusual substrate specificity of a chimeric hypoxanthine-guanine phosphoribosyltransferase containing segments from the Plasmodium falciparum and human enzymes. Biochem Biophys Res Commun.; 272: 596-602.
  • Suzuki T, Ide H, Yamada M, Endo N, Kanaori K, Tajima K, Morii T, Makino K. (2000) Formation of 2'-deoxyoxanosine from 2'-deoxyguanosine and nitrous acid: mechanism and intermediates. Nucleic Acids Res.; 28: 544-51.
  • Suzuki T, Yoshida M, Yamada M, Ide H, Kobayashi M, Kanaori K, Tajima K, Makino K. (1998) Misincorporation of 2'-deoxyoxanosine-5'-triphosphate by DNA polymerases and its implication for mutagenesis. Biochemistry.; 37: 11592-98.
  • Suzuki T, Matsumura Y, Ide H, Kanaori K, Tajima K, Makino K. (1997) Deglycosylation susceptibility and base-pairing stability of 2'-deoxyoxanosine in oligodeoxynucleotide. Biochemistry.; 36: 8013-9.
  • Swierkowski M, Shugar D. (1969) A new thymine base analogue, 5-ethyluracil: 5-ethyluridine-5'-pyrophosphate and poly-5-ethyluridylic acid. Acta Biochim Polon.; 16: 263-77.
  • Swierkowski M, Szer W, Shugar D. (1965) Some properties of poly-ribothymidylic acid, co-polymers of uridylic and ribothymidylic acids, and their 1:1 complexes with polyadenylic acid. Biochem Z.; 342: 429-36.
  • Szer W, Shugar D. (1963) Preparation of poly-5-fluorouridylic acid and the properties of halogenated poly-uridylic acids and their complexes with poly-adenylic acid. Acta Biochim Polon.; 10: 219-31.
  • Terato H, Masaoka A, Asagoshi K, Honsho A, Ohyama Y, Suzuki T, Yamada M, Makino K, Yamamoto K, Ide H. (2002) Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Nucleic Acids Res.; 30: 4975-84.
  • Torrence PF, De Clercq E, Witkop B. (1977) The interaction of polyxanthylic acid with polyadenylic acid. Biochim Biophys Acta.; 475: 1-6.
  • Twanmoh LM, Wood HB Jr, Driscoll JS. (1973) NMR spectral characteristics of N-H protons in purine derivatives. J Heterocycl Chem.; 10: 187-90.
  • Uefuji H, Ogita S, Yamaguchi Y, Koizumi N, Sano H. (2003) Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol.; 132: 372-80.
  • Versees W, Steyaert J. (2003) Catalysis by nucleoside hydrolases. Curr Opin Struct Biol.; 13: 731-8.
  • von der Saal W, Crysler CS, Villafranca JJ. (1985) Positional isotope exchange and kinetic experiments with Escherichia coli guanosine-5'-monophosphate synthetase. Biochemistry.; 24: 5343-50.
  • Vongchampa V, Dong M, Gingipalli L, Dedon P. (2003) Stability of 2'-deoxyxanthosine in DNA. Nucleic Acids Res.; 31: 1045-51.
  • Vos S, de Jersey J, Martin JL. (1997) Crystal structure of Escherichia coli xanthine phosphoribosyltransferase. Biochemistry.; 36: 4125-34.
  • Vos S, Parry RJ, Burns MR, de Jersey J, Martin JL. (1998) Structures of free and complexed forms of Escherichia coli xanthine-guanine phosphoribosyltransferase. J Mol Biol.; 282: 875-89.
  • Waalkes MP, Liu J. (2002) Purine nucleoside phosphorylase: A fortuitous cytosolic arsenate reductase? Toxicol Sci.; 70: 1-3.
  • Wang CC. (1984) Parasite enzymes as potential targets for antiparasitic chemotherapy. J Med Chem.; 27: 1-9.
  • Wang JK, Morris AJ. (1974) The distribution of nucleoside triphosphate pyrophosphohydrolase in the tissue of the rabbit. Arch Biochem Biophys.; 161: 118-24.
  • Wierzchowski J, Wielgus-Kutrowska B, Shugar D. (1996) Fluorescence emission properties of 8-azapurines and their nucleosides, and application to the kinetics of the reverse synthetic reaction of purine nucleoside phosphorylase. Biochim Biophys Acta.; 1290: 9-17.
  • Wilson DM III, Sofinowski TM, McNeill DR. (2003) Repair mechanisms for oxidative DNA damage. Front Biosci.; 8: 963-81.
  • Wuenschell GE, O'Connor TR, Termini J. (2003) Stability, miscoding potential, and repair of 2'-deoxyxanthosine in DNA: Implications for nitric oxide-induced mutagenesis. Biochemistry.; 42: 3608-16.
  • Xu Y, Grubmeyer C. (1998) Catalysis in hypoxanthine-guanine phosphoribosyltransferase: Asp137 acts as a general acid/base. Biochemistry.; 37: 4114-24.
  • Yamada Y, Goto H, Yoshino M, Ogasawara N. (1990) IMP dehydrogenase and action of antimetabolites in human cultured blast cells. Biochim Biophys Acta.; 1051: 209-14.
  • Yan L, Muller CE. (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: towards the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem.; 47: 1031-43.
  • Yanachkov I, Pan JY, Wessling-Resnick M, Wright GE. (1997) Synthesis and effect of nonhydrolyzable xanthine triphosphate derivatives on prenylation of Rab5D136N. Mol Pharmacol.; 51: 47-51.
  • Yu B, Slepak Z, Simon M. (1997) Characterization of a Ga mutant that binds xanthine nucleotides. J Biol Chem.; 272: 18015-9.
  • Yu B, Gu L, Simon M. (2000) Inhibition of subsets of G protein-coupled receptors by empty mutants of G protein alpha subunits in Go, G11 and G16. J Biol Chem.; 275: 71-6.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv51i2p493kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.