Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 995-1002

Article title

Influence of Me2SO and incubation time on papain activity studied using fluorogenic substrates.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Papain activity in a buffer containing Me2SO was studied using fluorogenic substrates. It was found that the number of active sites of papain decreases with increasing Me2SO concentration whereas the incubation time, in a buffer containing 3% Me2SO does not affect the number of active sites. However, an increase of papain incubation time in the buffer with 3% Me2SO decreased the initial rate of hydrolysis of Z-Phe-Arg-Amc as well as Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. Moreover, an increase of Me2SO concentration in working buffer decreased the initial rate of papain-catalysed hydrolysis of both substrates. A rapid decrease of the initial rate (by up to 30%) was observed between 1 and 2% Me2SO. Application of the Michaelis-Menten equation revealed that at the higher Me2SO concentrations the apparent values of kcat/Km decreased as a result of Km increase and kcat decrease. However, Me2SO changed the substrate binding process more effectively (Km) than the rate of catalysis kcat..

Year

Volume

48

Issue

4

Pages

995-1002

Physical description

Dates

published
2001
received
2001-07-27
revised
2001-09-19
accepted
2001-10-27

Contributors

  • Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
  • Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
  • Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland

References

  • 1. Gershkovich, A.A. & Kholodovych, V.V. (1996) Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J. Biochem. Biophys. Methods 33, 135-162.
  • 2. Klibanov, A.M. (1997) Why are enzyme less active in organic solvents than in water? Trends Biotechnol. 15, 97-101.
  • 3. Sarath, G., De La Motte, R.S. & Wagner, F.W. (1989) Protease assay methods; in Proteolytic Enzymes: a Practical Approach (Beynon, R.J. & Bond, J.S., eds.) pp. 25-55, IRL Press at Oxford University Press, Oxford, New York, Tokyo.
  • 4. Barrett, A.J. & Kirschke, H. (1981) Cathepsin B, cathepsin H and cathepsin L. Methods Enzymol. 80, 535-561.
  • 5. Zaks, A. & Klibanov, A.M. (1988) Enzymatic catalysis in nonaqueous solvent. J. Biol. Chem. 263(7), 3194-3201.
  • 6. Sirotkin, V.A., Zinatulin, A.N., Solomonov, B.N., Fazillin, D.A. & Fedotov, V.D. (2001) Colorimetric and Fourier transform infrared spectroscopic study of solid proteins immersed in low water organic solvents. Biochim. Biophys. Acta 1547, 359-369.
  • 7. Grard, E. & Legoy, M.-D. (1999) Activity and stability of dextransucrase from Leuconostoc mesenteroides NRRL B-512F in the presence of organic solvents. Enzyme Microb. Technol. 24, 425-432.
  • 8. Potier, P., Bouchu, A., Descotes, G. & Queneau, Y. (2000) Proteinase N-catalyzed transestrification in Me2SO-water and DMF- water; preparation of sucrose monomethacrylate. Tetrahedron Lett. 41, 3597-3600.
  • 9. Simon, L.M., László, K., Vértesi, A., Bagi, K. & Szajáni, B. (1998) Stability of hydrolytic enzymes in water-organic solvent systems. J. Mol. Catal. B: Enzymatic 4, 41-45.
  • 10. Okazaki, S., Goto, M. & Furusaki, S. (2000) Surfactant-protease complex as a novel biocatalyst for peptide synthesis in hydrophilic organic solvents. Enzyme Microb. Technol. 26, 159-164.
  • 11. Schmid, H., Koop, M., Utermann, S., Lambacher, L., Mayer, P. & Schaefer, L. (1997) Specific catalytic activity of cathepsin S in comparison to cathepsins B and L along the rat nephron. Biol. Chem. 378, 61-69.
  • 12. Kirschke, H., Clausen, T., Göhring, B., Günther, D., Heucke, E., Laube, F., Löwe, E., Neef, H., Papesch, H., Peinze, S., Plehn, G., Rebmann, U., Rinne, A., Rüdrich, R. & Weber, E. (1997) Concentrations of lysosomal cystein proteases are decreased in renal cell carcinoma compared with normal kidney. J. Cancer Res. Clin. Oncol. 123, 402-406.
  • 13. Dwojakowska, D., Dąbrowska, A., Łankiewicz, L., Wiczk, W. & Stachowiak, K. (1999) Fluorogenic substrates of papain with structural resemblance to the inhibitory center of family 2 cystatins; in Peptides 1998 (Bajusz, S. & Hudecz, F., eds.) p. 632, Proc. 25th Europ. Peptide Symp., Akademiai Kiado, Budapest.
  • 14. Garcia-Echeverria, C. & Rich, D.H. (1992) New intramolecularly quenched fluorogenic peptide substrates for the study of the kinetic specificity of papain. FEBS Lett. 297, 100-102.
  • 15. Blumberg, S., Schechter, I. & Berger, A. (1970) The purification of papain by affinity chromatography. Eur. J. Biochem. 15, 97-102.
  • 16. Bodanszky, M. & Bodanszky, A. (1984) The Practice of Peptide Chemistry. Springer-Verlag, New York.
  • 17. Jou, G., González, I., Albericio, F., Lloyd-Williams, P. & Giralt, E. (1997) Total synthesis of dehydrodidemnin B. Use of uranium and phosphonium salt coupling reagents in peptide synthesis in solution. J. Org. Chem. 62, 354-366.
  • 18. Barrett, A.J., Kembahavi, A.A., Brown, M.A., Kirschke, H., Knight, C.G., Tamai, M. & Hanada, K. (1982) L-trans-epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201, 189-198
  • 19. Lakowicz, J.R. (1999) Principles of Fluorescence Spectroscopy; 2 edn., chap. 6, pp. 185- 210, Kluwer Academic/Plenum Publisher, New York, Boston, Dordrecht, London, Moscow.
  • 20. Matsumoto, K., Murata, M., Sumiya, S., Kitamura, K. & Ishida, T. (1994) Clarification of substrate specificity of papain by crystal analyses of complexes with covalent-type inhibitors. Biochim. Biophys. Acta 1208, 268-276.
  • 21. Matsumoto, K., Murata, M., Sumiya, S., Mizoue, K., Kitamura, K. & Ishida, T. (1998) X-Ray crystal structure of papain complexed with cathepsin B-specific covalent-type inhibitor: Substrate specificity and inhibitory activity. Biochim. Biophys. Acta 1383, 93-100.
  • 22. Guo, Z., Ramirez, J., Li, J. & Wang, P.G. (1998) Peptidyl N-nitrosoanilines: A novel class of cysteine protease. J. Am. Chem. Soc . 120, 3726-3734.
  • 23. Iguchi, S., Kawasaki, K., Okamoto, H., Umezawa, C. & Okada, Y. (1999) Synthesis of some pseudo-peptide analogs of tiol proteinase inhibitors. Chem. Pharm. Bull. 47, 423-427.
  • 24. Maurel, P. (1978) Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. Biol. Chem. 253, 1677-1683.
  • 25. Turk, B., Dolenc, I., Lenarčič, B., Krizaj, I., Turk, V., Bieth, J.G. & Björk, I. (1999) Acidic pH as a physiological regulator of human cathepsin L activity. Eur. J. Biochem. 259, 926-932.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv48i4p995kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.