Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 4 | 963-971

Article title

In vitro effects of ozone on human erythrocyte membranes: An EPR study

Content

Title variants

Languages of publication

EN

Abstracts

EN
The effects of ozone at different concentrations (10, 30, 45 g/m3) on fluidity and thermotropic properties of erythrocyte membranes were investigated by EPR using two spin probes: 5-doxylstearic acid (5-DSA) and 16-doxylstearic acid (16-DSA). The effect of ozone on the erythrocyte membrane fluidity was a dose-dependent process. The ozone at concentration of 10 g/m3 caused rigidization of the membrane while at concentration of 45 g/m3 increased fluidity both on the surface and in the deeper hydrocarbon region of the membrane. Temperature transitions close to the polar heads region (monitored by 5-DSA) were not sensitive to an increase in ozone concentration. In the case of 16-DSA, low temperature thermotropic transition (around 20°C) gradually decreased with the increase of ozone concentration. High temperature transition (around 40°C) significantly differed at the ozone concentration of 10 g/m3 and 45 g/m3, being higher and lower, respectively, as compared to untreated cells. For the ozone concentration of 45 g/m3 the disappearance of the low temperature break and the appearance of two breaks at 37°C and 16°C were observed.

Year

Volume

47

Issue

4

Pages

963-971

Physical description

Dates

published
2000
revised
2000-10-24
accepted
2000-11-15

Contributors

  • Department of Biophysics, The Ludwik Rydygier University of Medical Sciences in Bydgoszcz, Bydgoszcz, Poland
  • Department of Biophysics, The Ludwik Rydygier University of Medical Sciences in Bydgoszcz, Bydgoszcz, Poland

References

  • Araiso, T., Shindo, Y., Arai, T., Nitta, J., Kikuchi, Y., Kakiuchi, Y. & Koyama, T. (1986) Viscosity and order in erythrocyte membranes studied with nanosecond fluorometry. Biorheology 23, 467-483.
  • Bartosz, G., Christ, G., Bosse, H. & Stephan, R. (1987) Thermal lability of membrane proteins of age separated erythrocytes as studied by electron spin resonance spin label technique. Z. Naturforsch. C 42, 1343-1344.
  • Bolton, D.C., Zee, Y.C. & Osebold, J.W. (1982) The biological effects of ozone on representative members of five groups of animal viruses. Environ. Res. 27, 476-484.
  • Borchman, D., Lamba, O.P. & Yappert, M.C. (1993) Structural characterisation of lipid membranes from clear and cataractous human lenses. Exp. Eye Res. 57, 199-208.
  • Bruch, R.C. & Thayer, W.S. (1983) Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. Biochim. Biophys. Acta 733, 216-222.
  • Burgard, H. (1990) Praktische Anwendung der Ozonotherapie in der Kleintierpraxis. Biol. Vet. Med. 5, 125-129.
  • Chan, P.C., Kindya, R.J. & Kesner, L. (1977) Studies on the mechanism of ozone inactivation of erythrocyte membrane (Na+ + K+)-activated ATPase. J. Biol. Chem. 252, 8537-8541.
  • Criegee, R. (1975) Mechanism of ozonolysis. Angew. Chem. Int. Ed. 14, 745-752.
  • Forte, T., Leto, T.L., Minetti, M. & Marchesi, V.T. (1985) Involvement of erythrocyte skeletal proteins in the modulation of membrane fluidity by phenothiazines. Biochemistry 24, 7876- 7880.
  • Freeman, B.A., Sharman, M.C. & Mudd, J.B. (1979) Reaction of ozone with phospholipid vesicles and human erythrocyte ghosts. Arch. Biochem. Biophys. 197, 264-272.
  • Fung, L.W., Kalaw, B.O., Hatfield, R.M., Dias, M.N. (1996) Erythrocyte spectrin maintains its segmental motions on oxidation: A spin-label EPR study. Biophys. J. 70, 841-851.
  • Gaffney, B.J. (1976) Practical considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes; in Spin Labelling. Theory and Applications (Berliner, R.J., ed.) pp. 567-571, Academic Press, New York, London.
  • Golan, D.E. & Weatch, W. (1980) Lateral mobility of band 3 in human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal interactions. Proc. Natl. Acad. Sci. U.S.A. 77, 2537-2541.
  • Hemminga, M.A. (1975) ESR spin label study of structural and dynamical properties of the oriented lecitin-cholesterol multibilayers. Chem. Phys. Lipids 14, 151-173.
  • Ignatenko, A.V. & Cherenkevich, S.N. (1985) Covalent crosslinking and protein destruction induced by ozone. Biofizika 30, 18-22.
  • Kaler, G.V., Melnikova, A.M., Matus, V.K. & Konev, S.V. (1989) Effect of ozone on erythrocyte membrane. Biol. Membr. 6, 1164-1168.
  • Koonotz, A.E. & Heath, R.L. (1979) Ozone alteration of transport of cations and the Na+/ K+-ATPase in human erythrocytes. Arch. Biochem. Biophys. 198, 493-500.
  • Matus, V.K., Kaler, G.V., Melnikova, A.M. & Konev, S.V. (1987) Protein damage after treatment with ozone of protoplasts and isolated E. coli membranes. Biofizika 32, 477-481.
  • Mehlman, M.A. & Borek, C. (1987) Toxicity and biochemical mechanisms of ozone. Environ. Res. 42, 36-53.
  • Menzel, D.B. (1970) Toxicity of ozone, oxygen and radiation. Annu. Rev. Pharmacol.. 10, 379-394.
  • Minetti, M. & Di Stasi, A.M. (1987) Involvement of erythrocyte skeletal proteins in the modulation of membrane fluidity by phenothiazines. Biochemistry 26, 8133-8137.
  • Minetti, M., Ceccarini, M. & Di Stasi, A.M. (1984) Characterization of thermotropic structural transitions of the erythrocyte membrane: A biochemical and electron-paramagnetic resonance approach. J. Cell. Biochem. 25, 73-86.
  • Minetti, M., Ceccarini, M., Di Stasi, A.M., Petrucci, T.C. & Marchesi, V.T. (1986) Spectrin involvement in a 40®C structural transition of the red blood cell membrane. J. Cell. Biochem. 30, 361-370.
  • Mudd, J.B. (1977) Reaction of ozone with biological membranes; in Biochemical Effects of Environmental Pollutants (Lee, S.D., ed.) pp. 97-133, Ann Arbor Science Publishers, Ann Arbor, MI.
  • Mudd, J.B., Dawson, P.J. & Santrock, J. (1997) Ozone does not react with human erythrocyte membrane lipids. Arch. Biochem. Biophys. 341, 251-258.
  • Mudd, J.B., Leavitt, R., Ongun, A. & McManus, T.T. (1969) Reaction of ozone with amino acids and proteins. Atmos. Environ. 3, 669-681.
  • Mustafa, M.G. (1990) Biochemical basis of ozone toxicity. Free Radic. Biol. Med. 9, 245-265.
  • Nigg, E.A. & Cherry, R.J. (1979) Influence of temperature and cholesterol on the rotational diffusion of band 3 in human erythrocyte membrane. Biochemistry 18, 3457-3465.
  • Oepen, I. (1992) Kritische Bewertung unkonwentioneller diagnostischer und therapeutischer Methoden in der Zahnheilkunde. Fortschr. Kieferorthop. 53, 239-246.
  • Ogura, R., Sugiyama, M., Sakanashi, T. & Ninomiya, T. (1988) ESR spin-labelling method of determining membrane fluidity in biological materials. Kurume Med. J. 35, 171-182.
  • Pryor, W.A. (1994) Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radical Biol. Med. 17, 451-465.
  • Pryor, W.A., Squadrito, G.L. & Friedman, M. (1995) The cascade mechanism to explain ozone toxicity: The role of lipid ozonation products. Free Radical Biol. Med. 19, 935-941.
  • Richter, C. (1987) Biophysical consequences of lipid peroxidation in membranes. Chem. Phys. Lipids 44, 175-189.
  • Schreier, S., Polnaszek, C.F. & Smith, I.C. (1978) Spin labels in membranes. Problems in practice. Biochim. Biophys. Acta 515, 395-436.
  • Shiratori, R., Kaneko, Y., Kobayashi, Y., Yamamoto, Y., Sano, H., Ishizu, Y. & Yamamoto, T. (1993) Can ozone administration activate the tissue metabolism? A study on brain metabolism during hypoxic hypoxia. Masui 42, 2-6.
  • Uppu, R.M., Cueto, R., Squadrito, G. & Pryor, W.A. (1995) What does ozone react with at the air/lung interface? Model studies using human red blood cell membranes. Arch. Biochem. Biophys. 319, 257-266.
  • Van Ginkel, G. & Sevanian, A. (1994) Lipid peroxidation-induced membrane structural alterations. Methods Enzymol. 233, 273-288.
  • Verweij, H., Christiane, K. & van Steveninck, J. (1982) Ozone-induced formation of O,O'-dityrosine cross-links in proteins. Biochim. Biophys. Acta 701, 180-184.
  • Washuttl, J. (1988) Immunologische Untersuchungen bei chronischen Erkrankungen unter Verbreitung von Ozon - Sauerstoff - Gemischen. Ozo-Nachrichten 102, 1-2.
  • Wróbel, A. & Gomuńkiewicz, J. (1999) Electron paramagnetic resonance studies of membrane fluidity in ozone-treated erythrocytes and liposomes. Biochem. Mol. Biol. Int. 47, 99-105.
  • Wróbel, A., Jezierski, A. & Gomuńkiewicz, J. (1997) Electron paramagnetic resonance studies of proteins in ozone-treated erythrocyte membranes. Biochem. Mol. Biol. Int. 41, 349- 357.
  • Wróbel, A., Jezierski, A. & Gomuńkiewicz, J. (1999) Decrease in 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) EPR signal in ozone- treated erythrocyte membranes. Free Radical Res. 31, 201-210.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv47i4p963kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.