Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2000 | 47 | 4 | 1027-2035

Article title

Heme synthesis in yeast does not require oxygen as an obligatory electron acceptor.

Content

Title variants

Languages of publication

EN

Abstracts

EN
In a previous paper (Krawiec, Z., Biliński, T., Schüller, C. & Ruis, H., 2000, Acta Biochim. Polon. 47, 201-207) we have shown that catalase T holoenzyme is synthesized in the absence of oxygen after treatment of anaerobic yeast cultures with 0.3 M. NaCl, or during heat shock. This finding suggests that heme moiety of the enzyme can either be formed de novo in the absence of oxygen, or derives from the preexisting heme pool present in cells used as inoculum. The strain bearing hem1 mutation, resulting in inability to form δ-aminolevulinate (ALA), the first committed precursor of heme, was used in order to form heme-depleted cells used as inocula. The cultures were supplemented with ALA at the end of anaerobic growth prior the stress treatment. The appearance of active catalase T in the stressed cells strongly suggests that heme moiety of catalase T is formed in the absence of oxygen. This finding suggests the necessity to reconsider current opinions concerning mechanisms of heme synthesis and the role of heme as an oxygen sensor.

Year

Volume

47

Issue

4

Pages

1027-2035

Physical description

Dates

published
2000
received
2000-01-31
revised
2000-05-4
accepted
2000-07-20

Contributors

  • Zamość College of Agriculture, Zamość, Poland
  • Zamość College of Agriculture, Zamość, Poland
  • Institute of Biology, Pedagogical University of Rzeszów, Rzeszów, Poland

References

  • 1. Hoertner, H., Ammerer, G., Hartter, E., Hamilton, B., Rytka, J., Biliński, T. & Ruis, H. (1982) Eur. J. Biochem. 128, 179-184.
  • 2. Sano, S. & Granick, S. (1961) J. Biol. Chem. 236, 1173-1180.
  • 3. Porra, R.J. & Falk, J.E. (1964) Biochem. J. 90, 69-75.
  • 4. Winkler, H., Adam, G., Mattes, E., Schanz, H., Hartig, A. & Ruis, H. (1988) EMBO J. 7, 1799-1804.
  • 5. Guarente, L. (1983) Methods Enzymol. 101, 181-191.
  • 6. Pinkham, J.L. & Keng, T. (1994) in Metal Ions in Fungi (Winkelmann, G. & Winge, D.R., eds.) pp. 455-501, Marcel Dekker Inc., New York.
  • 7. Pinkham, J.L., Wang, Z. & Alsina, J. (1997) Curr. Genet. 31, 281-291.
  • 8. Śledziewski, A., Rytka, J., Biliński, T., Hoertner, H. & Ruis, H. (1981) Curr. Genet. 4, 19-23.
  • 9. Barlas, M., Ruis, H. & Śledziewski, A. (1978) FEBS Lett. 92, 195-199.
  • 10. Biliński, T., Łukaszkiewicz, J. & Śledziewski, A. (1978) Biochem. Biophys. Res. Commun. 83, 1225-1233.
  • 11. Krawiec, Z., Biliński, T., Schüller, C. & Ruis, H. (2000) Acta Biochim. Polon. 47, 201-207.
  • 12. Krawiec, Z. & Biliński, T. (1987) Bull. Pol. Ac.: Biol. 35, 285-291.
  • 13. Skoneczny, M. (1993) PhD Thesis. Institute of Biochemistry and Biophysics, 147 pp., Polish Academy of Sciences, Warsaw, Poland.
  • 14. Cohen, G., Fessl, U., Traczyk, A., Rytka, J. & Ruis, H. (1985) Molec. Gen. Genet. 200, 74-79.
  • 15. Urban-Grimal, D., Volland, C., Garnier, T., Dehoux, P. & Labbe-Bois, R. (1986) Eur. J. Biochem. 156, 511-519.
  • 16. Susani, M., Zimniak, P., Fessl, F. & Ruis, H. (1976) Hoppe-Seyler's Z. Physiol. Chem. 357, 961-970.
  • 17. Beers, R.F. & Sizer, J.W. (1952) J. Biol. Chem. 195, 133-138.
  • 18. Gough, S.P., Beale, S.I. & Granick, S. (1976) Ann. Clin. Res. 8 (Suppl. 17), 70-73.
  • 19. Rieble, S. & Beale, S.I. (1991) Arch. Biochem. Biophys. 289, 289-297.
  • 20. Choi, P., Wang, L., Archer, C.D. & Elliott, T. (1996) J. Bacteriol. 178, 638-646.
  • 21. Oh-hama, T. (1997) Orig. Life Evol. Biosph. 27, 405-412.
  • 22. Weinstein, J.D. & Beale, S.I. (1983) J. Biol. Chem. 258, 6799-67807.
  • 23. Jacobs, N.J. & Jacobs, J.M. (1976) Biochim. Biophys. Acta 449, 1-9.
  • 24. Xu, K., Delling, J. & Elliott, T. (1992) J. Bacteriol. 174, 3953-3963.
  • 25. Xu, K. & Elliott, T. (1994) J. Bacteriol. 176, 3196-3203.
  • 26. Goffeau, A. (1997) Nature 387 (Suppl), 5-103.
  • 27. Labbe-Bois, R. & Labbe, P. (1990) in Biosynthesis of Heme and Chlorophylls (Dailey, H.A., ed.) pp. 235-285, McGraw-Hill, New York.
  • 28. Sigler, K. & Gille, G. (1998) Folia Microbiol. (Praha) 43, 369-372.
  • 29. Zitomer, R.S. & Lowry, C.V. (1992) Microbiol. Rev. 56, 1-11.
  • 30. Burke, P.V., Raitt, D.C., Allen, L.A., Kellogg, E.A. & Poyton, R.O. (1997) J. Biol. Chem. 272, 14705-14712.
  • 31. Kwast, K.F., Burke, P.V. & Poyton, R.O. (1998) J. Exp. Biol. 201, 1177-1195.
  • 32. Kwast, K.E., Burke, P.V., Staahl, B.T. & Poyton, R.O. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 5446-5451.
  • 33. Gilles-Gonzalez, M.A., Gonzalez, G. & Perutz, M.F. (1995) Biochemistry 34, 232-236.
  • 34. Skoneczny, M. & Rytka, J. (2000) Biochem. J. 350, 313-319.
  • 35. Rouault, T.A. & Klausner, R.D. (1996) Trends Biochem. Sci. 21, 174-177.
  • 36. Zhang, L., Hach, A. & Wang, C. (1998) Mol. Cell. Biol. 18, 3819-3828.
  • 37. Hon, T., Hach, A., Tamalis, D., Zhu, Y. & Zhang, L. (1999) J. Biol. Chem. 274, 22770-22774.
  • 38. Hach, A., Hon, T. & Zhang, L. (2000) J. Biol. Chem. 275, 248-254.
  • 39. Soga, O., Kinoshita, H., Ueda, M. & Tanaka, A. (1997) J. Biochem. (Tokyo) 121, 25-28.
  • 40. Kranz, R., Lill, R., Goldman, B., Bonnard, G. & Merchant, S. (1998) Mol. Microbiol. 29, 383-396.
  • 41. Beckman, D.L., Trawick, D.R. & Kranz, R.G. (1992) Genes Dev. 6, 268-283.
  • 42. Goldman, B.S., Beckman, D.L., Bali, A., Monika, E.M., Gabbert, K.K. & Kranz, R.G. (1997) J. Mol. Biol. 268, 724-738.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv47i4p1027kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.