Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 44 | 215-230

Article title

The condition of seagrass meadow in the waters of Kelapa Dua Island, Seribu Islands, Jakarta, Indonesia

Content

Title variants

Languages of publication

EN

Abstracts

EN
Seagrass is a higher-level plant that can live immersed in water in the aquatic environment near the coast. Seagrass colonies form a seagrass ecosystem that functions as a support in coastal waters which is strongly influenced by processes that occur in the sea and land. This ecosystem has a function as a primary producer, a recycler of nutrients, and a stabilizer of the bottom of the waters, as a habitat for biota, a place for spawning, a place for nurturing and foraging for various marine biota, and can protect the coast from the erosion process because it functions as a wave absorber and traps sediments. The field survey was conducted in April 2014 for seagrass observations and measurement of water condition parameters. The purpose of this study was to determine the types and conditions of seagrass on Kelapa Dua Island. The quadrant transect method was applied to seagrass observations carried out at 3 stations with each station consisting of 9 1m × 1m quadrant transect plots, then analyzed using a descriptive-quantitative approach. The results of the measurement of water quality parameters in the form of temperature ranged from 30.30 – 32.60 °C, the salinity of the waters in this study was in the range of 31.70 – 35.70‰. The pH value ranges from 7.40 – 7.75. DO levels ranged from 6.30 – 6.90 mg·L-1. The nutrients in the form of N and P were in the range of 1.19 - 1.79 mg·L-1 and 0.22 - 0.25 mgL-1, respectively. Meanwhile, seagrass observations found three types of seagrass, namely H. uninervis, T. hemperichii, and H. ovalis. The lowest percentage of seagrass cover was at station 1, which was 7.8% and the highest was at station 2, which was 36.11% with a diversity index ranging from zero to 0.94. The type of sediment at the research site has the characteristics of gravel sand.

Year

Volume

44

Pages

215-230

Physical description

Contributors

  • Depertment of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jalan Ir. Soekarno Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia
  • Depertment of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jalan Ir. Soekarno Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia
  • Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jalan Ir. Soekarno Km. 21 Jatinangor, Sumedang 45363, West Java, Indonesia

References

  • [1] A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Seagrasses: Biology, ecology and conservation. Dordrecht: Springer (2006).
  • [2] E. P. Green and F. T. Short, World atlas of seagrasses. Berkeley, USA: University of California Press (2003).
  • [3] F. Short, T. Carruthers, W. Dennison, and M. Waycott, Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Bio. Ecol. 350(1–2) (2007) 3–20.
  • [4] K. H. Mann, Ecology of Coastal Waters: With Implications For Management, 2nd ed. Malden, USA: Wiley-Blackwell (2000).
  • [5] C. M. Duarte, Seagrass depth limits. Aquat. Bot. 40(4) (1991) 363–377.
  • [6] M. A. Hemminga and C. M. Duarte, Seagrass Ecology, 1 ed. Cambridge, United Kingdom: Cambridge University Press (2000).
  • [7] M. H. Azkab, Structure and function in seagrass communities. Oseana 25(3) (2000) 9–17
  • [8] R. Pratiwi, Association of crustaceans in seagrass ecosystems in the waters of Lampung Bay. Ilmu Kelautan 15(2) (2010) 66–76
  • [9] J. A. Vonk, M. J. A. Christianen, and J. Stapel, Abundance, edge effect, and seasonality of fauna in mixed-species seagrass meadows in southwest Sulawesi, Indonesia. Mar. Biol. Res. 6(3) (2010) 282–291.
  • [10] P. L. A. Erftemeijer, R. Osinga, and A. E. Mars, Primary production of seagrass beds in South Sulawesi (Indonesia): a comparison of habitats, methods and species. Aquat. Bot. 46(1) (1993) 67–90
  • [11] C. Satrya, M. Yusuf, M. Shidqi, B. Subhan, D. Arafat, and F. Anggraeni, Seagrass diversity in Banten Bay, the Province of Banten. Jurnal Teknologi Perikanan and Kelautan 3(1) (2012) 29–34
  • [12] T. Kikuchi and J. M. Peres, Consumer ecology of seagrass beds in Seagrass Ecosystems: A Scientific Perspective, C. P. McRoy, and C. Helffrich, Ed. New York: Marcel Dekker, Inc, (1977) 147–193
  • [13] M. Dorenbosch, M. G. G. Grol, I. Nagelkerken, and G. van der Velde, Seagrass beds and mangroves as nurseries for the threatened IndoPacific Humphead wrasse, Cheilinus undulatus and Caribbean Rainbow parrotfish, Scarus guacama. Biol. Conserv. 129 (2006) 277–282
  • [14] M. Dorenbosch, M. C. van Riel, I. Nagelkerken, and G. van der Velde, The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuar. Coast. Shelf Sci. 60 (2004) 37–48
  • [15] S. Tebay and D. C. Mampioper, Potential study of seagrass and interaction pattern of seagrass fishery resources utilization (Case Kampung Kornasoren and Yenburwo, Numfor, Papua). J. Trop. Fish. Manag. 1(1) (2017) 59–69
  • [16] S. Rahmawati, T. H. E. Threat, T. O. Seagrass, and M. Community, The threat to seagrass meadow community. Oseana 36(2) (2011) 49–58
  • [17] B. Ondiviela, I. J. Losada, J. L. Lara, M. Maza, C. Galván, T. J. Bouma, and J. van Belzen, The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87 (2014) 158–168
  • [18] I. R. B. Reeves, L. J. Moore, E. B. Goldstein, A. B. Murray, J. A. Carr, and M. L. Kirwan, Impacts of seagrass dynamics on the coupled long-term evolution of barrier-marsh-bay systems. J. Geophys. Res. Biogeosciences 125(2) (2020) 1–19
  • [19] R. K. James, A. Lynch, P. M. J. Herman, M. M.van Katwijk, B. I.van Tussenbroek, H. A. Dijkstra, R. M.van Westen, C. G.van der Boog, R. Klees, J. D. Pietrzak, C. Slobbe, and T. J. Bouma, Tropical biogeomorphic seagrass landscapes for coastal protection: Persistence and wave attenuation during major storms events. Ecosystems 24(2) (2021) 301–318
  • [20] M. Potouroglou, J. C. Bull, K. W. Krauss, H. A. Kennedy, M. Fusi, D. Daffonchio, M.a M. Mangora, M. N. Githaiga, K. Diele1, and M. Huxham, Measuring the role of seagrasses in regulating sediment surface elevation. Sci. Rep. 7(1) (2017) 1–11
  • [21] C. M. Duarte and C. L. Chiscano, Seagrass biomass and production: A reassessment. Aquat. Bot. 65(1–4) (1999) 159–174
  • [22] V. X. H. Phang, L. M. Chou, and D. A. Friess, Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Process. Landforms 40(10) (2015) 1387–1400
  • [23] I. Angrelina, A. Sartimbul, and A. J. Wahyudi, The potential of seagrass beds on the coast of Putri Menjangan as a carbon sequestration ecosystem on Bali Island. IOP Conf. Ser. Earth Environ. Sci. 241(1) (2019) 1-8.
  • [24] J. W. Fourqurean, C. M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M. A. Mateo, E. T. Apostolaki, G. A. Kendrick, D. Krause-Jensen, K. J. McGlathery and O. Serrano, Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5(7) (2012) 505–509.
  • [25] W. Kiswara, Preliminary study: Ability of seagrass beds as carbon stock and carbon sink at Pari Island, Jakarta. Oseanologi and Limnol. di Indonesia 36(3) (2010) 361–376
  • [26] C. M. P. Gono, P. Ahmadi, T. Hertiani, E. Septiana, M. Y. Putra, and G. Chianese, A Comprehensive update on the bioactive compounds from seagrasses. Mar. Drugs 20(406) (2022) 1-37)
  • [27] F. T. Short and S. Wyllie-Eciieverria, Natural and human-induced disturbance of seagrasses. Environ. Conserv. 23(1) (1996) 17–27.
  • [28] M. Waycott, C. M. Duarte, T. J. B. Carruthers, R. J. Orth, W. C. Dennison, S. Olyarnik, A. Calladine, J. W. Fourqurean, K. L. Heck, Jr., A. R. Hughes, G. A. Kendrick, W. J. Kenworthy, F. T. Short, and S. L. Williams, Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106(30) (2009) 12377–12381
  • [29] F. T. Short and H. A. Neckles, The effects of global climate change on seagrasses. Aquat. Bot. 63(3–4) (1999) 169–196.
  • [30] R. J. Orth, T. J. B. Carruthers, W. C. Dennison, C. M. Duarte, J. W. Fourqurean, K. L. Heck Jr., A. R. Hughes, G. A. Kendrick, W. J. Kenworthy, S. Olyarnik, F. T. Short, M. Waycott, and S. L. Williams, A global crisis for seagrass ecosystems. Bioscience 56(12) (2006) 987–996
  • [31] F. T. Short, B. Polidoro, S. R. Livingstone, K. E. Carpenter, S. Bandeira, J. S. Bujang, H. P. Calumpong, T. J. B. Carruthers, R. G. Coles, W. C. Dennison, P. L. A. Erftemeijer, M. D. Fortes, A. S. Freeman, T.G. Jagtap, A. H. M. Kamal, G. A. Kendrick, W. J. Kenworthy, Y. A. La Nafie, I. M. Nasution, R. J. Orth, A. Prathep, J. C. Sanciangco, B. van Tussenbroek, S. G. Vergara, M. Waycott, J. C. Zieman, Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144(7) (2011) 1961–1971
  • [32] W. Kiswara, The impact of the industrial area expansion on the decline of seagrass beds in Banten Bay, West Java in National Seminar in the impact of development on coastal areas (1994) 1–11.
  • [33] R. K. F. Unsworth, R. Ambo-Rappe, B. L. Jones, Y. A. La Nafie, A. Irawan, U. E. Hernawan, A. M. Moore, L. C. Cullen-Unsworth, Indonesia’s globally significant seagrass meadows are under widespread threat. Sci. Total Environ. 634 (2018) 279–286
  • [34] I. Karlina, F. Kurniawan, and F. Idris, Pressures and status of seagrass ecosystem in the coastal areas of North Bintan, Indonesia. E3S Web Conf. 47 (2018) 1–6
  • [35] N. D. M. Sjafrie, U. E. Hernawan, B. Prayudha, I. H. Supriyadi, M. Y. Iswari, Rahmat, K. Anggraini, S. Rahmawati and Suyarso, Indonesia seagrass meadow status 2018. Jakarta, Indonesia (2018).
  • [36] R. N. Rollon, J. E. Vermaat, and H. M. E. Nacorda, Sexual reproduction in SE Asian seagrasses: The absence of a seed bank in Thalassia hemprichii. Aquat. Bot. 75(2) (2003) 181–185
  • [37] A. Alagna, G. D'Anna, L. Musco, T. V. Fernández, M. Gresta, N. Pierozzi, and F. Badalamenti, Taking advantage of seagrass recovery potential to develop novel and effective meadow rehabilitation methods. Mar. Pollut. Bull. 149 (2019) 1-12
  • [38] A. D. Irving, J. E. Tanner, and G. J. Collings, Rehabilitating seagrass by facilitating recruitment: Improving chances for success. Restor. Ecol. 22(2) (2014) 134–141.
  • [39] BPS-Statistics of Kepulauan Seribu Regency, Kepulauan Seribu Regency in figures 2021. Jakarta, Indonesia: BPS-Statistics of Kepulauan Seribu Regency (2021).
  • [40] C. J. Krebs, Ecology: The experimental analysis of distribution and abundance, 6 ed. Essex, England: Pearson Education Limited (2014).
  • [41] M. H. Azkab, The guidelines of the seagrass inventory. Oseana 24(1) (1999) 1–16
  • [42] M. F. Fachrul, Bioecological sampling method, 1 ed. Jakarta, Indonesia: Bumi Aksara (2007).
  • [43] M. J. Rugebregt, C. Matuanakotta, and M. Syafrizal, Species diversity, seagrass cover, and water quality in Ambon Bay Waters. J. Ilmu Lingkungan 18(3) (2020) 589–594
  • [44] F. T. Short, R. G. Coles, and C. Pergent-Martini, Global seagrass distribution in Global seagrass research methods, F. T. Short, R. G. Coles, and C. A. Short, Ed. Amsterdam, The Netherlands: Elsevier Science B.V (2001) 5–30
  • [45] E. W. Koch and J. J. Verduin, Measurements of physical parameters in seagrass habitats in Global seagrass research methods, 1 ed., F. T. Short, R. G. Coles, and C. A. Short, Ed. Amsterdam, The Netherlands: Elsevier Science B.V (2001) 325–344
  • [46] P. M. J. Tuapattinaya, Relations factor physical chemistry environment with the seagrass beds (seagrass) in coastal waters village Suli. Biosel Biol. Sci. Educ. 3(1) (2014) 54–67
  • [47] D. Krause-Jensen, S. Sagert, H. Schubert, and C. Boström, Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecol. Indic. 8(5) (2008) 515–529
  • [48] R. Arévalo, S. Pinedo, and E. Ballesteros, Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: Descriptive study and test of proposed methods to assess water quality regarding macroalgae. Mar. Pollut. Bull. 55(1–6) (2007) 104–113.
  • [49] J. M. Neto, D. V. Barroso, and P. Barría, Seagrass Quality Index (SQI), a Water Framework Directive compliant tool for the assessment of transitional and coastal intertidal areas. Ecol. Indic. 30 (2013) 130–137
  • [50] Nybakken and J. Willard, Marine biology: An ecological approach, 5th ed. New York: Benjamin Cummings (2001).
  • [51] A. W. D. Larkum, M. Pernice, M. Schliep, P. Davey, M. Szabo, J. A. Raven, M. Lichtenberg, K. E. Brodersen, and P. J. Ralph, Photosynthesis and metabolism of seagrasses in Seagrasses of Australia: Structure, ecology and conservation, A. Larkum, G. Kendrick, and P. Ralph, Ed. Springer International Publishing (2018) 315–342.
  • [52] R. C. Phillips and E. G. Menez, Seagrasses. Washington D.C.: Smithsonion Institution Press (1988).
  • [53] J. Borum, K. Sand-Jensen, T. Binzer, O. Pedersen, and T. M. Greve, Oxygen movement in seagrasses in Seagrasses: Biology, ecology and conservation, A. W. D. Larkum, R. J. Orth, and C. M. Duarte, Ed. Dordrecht, The Netherlands: Springer (2006) 255–270
  • [54] P. A. Staehr, J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen, and S. V. Smith, The metabolism of aquatic ecosystems: History, applications, and future challenges. Aquat. Sci. 74(1) (2012) 15–29
  • [55] P. Felisberto, S. M. Jesus, F. Zabel, R. Santos, J. Silva, S. Gobert, S. Beer, M. Björk, S. Mazzuca, G. Procaccini, J. W. Runcie, W. Champenois, A. V. Borges, Acoustic monitoring of O2 production of a seagrass meadow. J. Exp. Mar. Bio. Ecol. 464 (2015) 75–87
  • [56] D. Suhanda, M. S. Yuniarti, Y. Nurul Ihsan, and S. A. Harahap, Nutrient concentration and population of macrozoobenthos in Ciletuh Bay, Sukabumi District, West Java. IOP Conf. Ser. Earth Environ. Sci. 406(1) (2019) 1–13.
  • [57] Y. Amelia, M. R. Muskananfola, and P. W. Purnomo, Distribution of sediment structure, organic material, nitrate and phosphate at the Estuary of Morodemak. Maquares 3(4) (2014) 208–215.
  • [58] S. A. Harahap, L. P. S. Yuliadi, and J. N. Sinulingga, Surficial sedimentary at the bottom in waters surrounding the arisen land of Putri Island, Karawang - Indonesia. World Sci. News 151 (2021) (2020) 95–109.
  • [59] S. A. Harahap, L. P. S. Yuliadi, N. P. Purba, and A. A. Aulia, Mapping of sediment on the waters around Panjang Island, Banten Bay, Indonesia. J. Geosci. Eng. Environ. Technol. 6(2) (2021) 99–106.
  • [60] S. I. Patty, H. Arfah, and M. S. Abdul, Nutrients (phosphate, nitrate), dissolved oxygen, and dissolved pH and their relation to productivity of Jikumerasa Waters, Buru Island. J. Pesisir and Laut Tropis 1(1) (2015) 43–50.
  • [61] I. Riniatsih, A. Ambariyanto, E. Yudiati, R. Hartati, W. Widianingsih, and R. T. Mahendrajaya, Diversity species and condition of seagrass ecosystem in Teluk Awur and Prawean Jepara. IOP Conf. Ser. Earth Environ. Sci. 236 (2019) 1-4.
  • [62] K. B. P. Mahesswara, N. L. Watiniasih, and I. W. Darya Kartika, the Community structure of seagrass beds in Pandawa Beach aquatic, Bali. Simbiosis 9(1) (2021) 12-21
  • [63] J. A. Vonk, M. J. A. Christianen, J. Stapel, and K. R. O’Brien, What lies beneath: Why knowledge of belowground biomass dynamics is crucial to effective seagrass management. Ecol. Indic. 57 (2015) 259–267
  • [64] L. J. McKenzie, S. M. Yaakub, R. Tan, J. Seymour, and R. L. Yoshida, Seagrass habitats of Singapore: Environmental drivers and key processes. Raffles Bull. Zool. 34 (2016) 60–77
  • [65] R. Hartati, A. Santoso, H. Endrawati, I. Riniatsih, W. L. Saputra, and R. Triaji, Variations in composition and density of seagrass species in Ujung Piring Waters, Jepara Regency. J. Kelaut. Tropis 20(2) (2017) 96–105
  • [66] S. English, C. Wilkinson, and V. Baker, Seagrass communities in Survey manual for tropical marine resources, 2 ed., Townsville, Australia: Australian Institute of Marine Science (1997) 239–272
  • [67] P. L. A. Erftemeijer and J. J. Middelburg, Sediment-nutrient interactions in tropical seagrass beds - A comparison between a terrigenous and a carbonate sedimentary environment in south Sulawesi (Indonesia). Mar. Ecol. Prog. Ser. 102(1–2) (1993) 187–198
  • [68] E. I. Ahmad-Kamil, R. Ramli, S. A. Jaaman, J. Bali, and J. R. Al-Obaidi, The effects of water parameters on monthly seagrass percentage cover in Lawas, East Malaysia. Sci. World J. 2013 (2013) 1–8
  • [69] F. Setiawan, S. A. Harahap, Y. Andriani, and A. A. Hutahaean, Seagrass change detection using remote sensing technology and its relation with carbon storage in Banten Bay. J. Perikanan and Kelautan 3(3) (2012) 275–286

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-ff3d2d89-8d3d-45b2-8df0-aa3471f80e80
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.