PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 89 | 39-47
Article title

Analytical models for quark stars with electric field

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We found new class of solutions to the Einstein-Maxwell system of equations for charged quark matter within the framework of MIT Bag Model considering a prescribed form of gravitational potential Z(x) used by Malaver (2016), which depends on an adjustable parameter n. Variables as the energy density, charge density, pressure and the metric functions are written in terms of elementary and polynomial functions. We show that the form chosen for the gravitational potential allows obtain physically acceptable solutions with any value of the adjustable parameter.
Discipline
Year
Volume
89
Pages
39-47
Physical description
References
  • [1] P.K. Kuhfitting, Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys. 5, 365-367, 2011.
  • [2] J. Bicak, Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173, 2006.
  • [3] M. Malaver, Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9 2013.
  • [4] K. Komathiraj, S.D. Maharaj, Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav. 39, 2079-2093, 2008.
  • [5] R. Sharma, S, Mukherjee, S.D. Maharaj, General solution for a class of static charged stars, Gen. Rel. Grav. 33, 999-110, 2001.
  • [6] R.L. Bowers, E.P.T. Liang, Anisotropic spheres in general relativity, Astrophys. J. 188, 657, 1974.
  • [7] M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of anisotropic spheres in general relativity, J. Math. Phys. 22(1), 118, 1981.
  • [8] M.K. Gokhroo, A.L. Mehra, Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav. 26(1), 75-84, 1994.
  • [9] A.I. Sokolov, Phase transitions in a superfluid neutron liquid, Sov. Phys. JETP. 52, 575, 1980.
  • [10] V.V. Usov, Electric fields at the quark surface of strange stars in the color-flavor locked phase, Phys. Rev. D, 70, 067301, 2004.
  • [11] K. Komathiraj, S.D. Maharaj, Analytical models for quark stars, Int. J. Mod. Phys. D 16, pp. 1803-1811, 2007.
  • [12] M. Malaver, Models for quark stars with charged anisotropic matter, Research Journal of Modeling and Simulation, 1(4), 65-71, 2014.
  • [13] M. Malaver, Some new models for strange quark stars with isotropic pressure, AASCIT Communications, 1, 48-51, 2014.
  • [14] S. Thirukkanesh, S.D. Maharaj, Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001, 2008.
  • [15] S.D. Maharaj, J.M, Sunzu, and S. Ray, Some simple models for quark stars, Eur. Phys. J. Plus. 129, 3, 2014.
  • [16] S. Thirukkanesh, F.C. Ragel, A class of exact strange quark star model, PRAMANA - Journal of physics, 81(2), 275-286, 2013.
  • [17] J.M. Sunzu, S.D. Maharaj S. Ray, Quark star model with charged anisotropic matter, Astrophysics. Space. Sci. 354, 517- 524, 2014.
  • [18] T. Feroze, A. Siddiqui, Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav. 43, 1025-1035, 2011, 2011.
  • [19] T. Feroze, and A. Siddiqui, Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947, 2014.
  • [20] M. Malaver, Strange quark star model with quadratic equation of state, Frontiers of Mathematics and Its Applications 1(1), 9-15, 2014.
  • [21] M. Malaver, Quark star model with charge distributions, Open Science Journal of Modern Physics 1(1), 6-11, 2014.
  • [22] M. Malaver, Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application 2(1), 1-6, 2015.
  • [23] M. Malaver, Classes of Relativistic Stars with Quadratic Equation of State, World Scientific News 57 (2016) 70-80
  • [24] P.M. Takisa, S.D. Maharaj, Some charged polytropic models, Gen. Rel. Grav. 45, 1951-1969, 2013.
  • [25] S. Thirukkanesh, F.C. Ragel, Exact anisotropic sphere with polytropic equation of state, PRAMANA - Journal of physics, 78(5), 687-696, 2012.
  • [26] M. Malaver, Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics 1(4), 41-46, 2013.
  • [27] M. Malaver, Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming 3, 309-313, 2013.
  • [28] S. Thirukkanesh, F.C. Ragel, Strange star model with Tolmann IV type potential, Astrophysics and Space Science 352(2), 743-749, 2014.
  • [29] M.K Mak, T. Harko, Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys, D 13, 149-156, 2004.
  • [30] P. Bhar, M.H. Murad, N. Pant, Relativistic anisotropic stellar models with Tolman VII spacetime, Astrophysics and Space Science 359: 13, 2015. doi:10.1007/s10509-015-2462-9
  • [31] P. Bhar, K.N, Singh, N. Pant, Compact star modeling with quadratic equation of state in Tolman VII spacetime, Indian Journal of Physics, doi:10.1007/s12648-017-0963-9 2017.
  • [32] N. Pant, N. Pradhan, M. Malaver. Anisotropic fluid star model in isotropic coordinates. Int. J. Astrophys. Space. Sci. 3(1), 1-5, 2015.
  • [33] M.C. Durgapal, R. Bannerji, New analytical stellar model in general relativity, Phys. Rev. D 27, 328-331, 1983.
  • [34] M. Malaver, Analytical models for compact stars with a linear equation of state, World Scientific News 50 (2016) 64-73
  • [35] K.Jotania, R.Tikekar, Paraboloidal space-times and relativistic models of strange Stars, Int. J. Mod. Phys. D 15, 1175-1182 (2006).
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-febbceac-0889-46f0-8aba-62892dffc08d
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.