Preferences help
enabled [disable] Abstract
Number of results
2021 | 160 | 37-48
Article title

New Anisotropic Stellar Models

Title variants
Languages of publication
New classes of exact solutions of the Einstein field equation are found in closed form for a static spherically symmetric anisotropic star by generalizing earlier approaches. The field equations are integrated by specifying one of the gravitational potentials and the anisotropic factor which are physically reasonable. We demonstrate that it is possible to obtain a more general class of solutions to the Einstein field equation in the form of series with anisotropic matter. For specific parameter values it is possible to find new exact models for the Einstein system in terms of elementary functions from the general series solution.
Physical description
  • Department of Mathematical Sciences, Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sammanthurai, Sri Lanka
  • [1] Bowers R. L. and Liang E. P. T., Anisotropic Spheres in General Relativity, The Astrophysical Journal, 188 (1974) 657-665
  • [2] Malaver M., Generalized nonsingular model for compact stars electrically charged. World Scientific News 92 (2018) 327-339
  • [3] Sokolov A. I., Phase transitions in a superfluid neutron liquid, Sov. Phys. JETP, 52 (1980) 575-576
  • [4] Usov V. V., Electric fields at the quark surface of strange stars in the color- flavor locked phase, Physical Review D, 70 (2004) 067301
  • [5] Herrera L. and de Leon J. P., Anisotropic spheres admitting a one‐parameter group of conformal motions, Journal of Mathematical Physics, 26 (1985) 2018
  • [6] Herrera L. and Santos N. O., Geodesics in Lewis space–time, Journal of Mathematical Physics, 39 (1998) 3817
  • [7] Bondi H., Anisotropic spheres in general relativity, Monthly Notices of the Royal Astronomical Society, 259 (1992) 365
  • [8] Malaver M., Quark star model with charge distributions. Open Science Journal of Modern Physics, 1 (2014) 6-11
  • [9] Tello-Ortiz F., Malaver M., Rincón A.and Gomez-Leyton Y., Relativistic Anisotropic Fluid Spheres Satisfying a Non-Linear Equation of State, Eur Phys J, 80 (2020) 371
  • [10] Malaver M. and Kasmaei HD., Charged Anisotropic Matter with Modified Chaplygin Equation of State, Int J Phys Stud Res, 3(2021) 83-90
  • [11] Malaver M. and Hamed Daei Kasmaei., Classes of Charged Anisotropic Stars with Polytropic Equation of state. International Journal of Research and Reviews in Applied Sciences 46 (1) (2021) 38-51
  • [12] Thirukkanesh S. and Ragel F.C., Exact anisotropic sphere with polytropic equation of state, Pramana - Journal of Physics, 78(2012) 687-696
  • [13] Feroze T. and Siddiqui A., Charged anisotropic matter with quadratic equation of state. Gen. Rel. Grav 43 (2011) 1025-1035
  • [14] Pant N., Pradhan N. and Malaver M., Anisotropic fluid star model in isotropic coordinates, International Journal of Astrophysics and Space Science. Special Issue: Compact Objects in General Relativity, 3 (2015) 1-5
  • [15] Malaver M., Some new models of anisotropic compact stars with quadratic equation of state. World Scientific News 109 (2018) 180-194
  • [16] Malaver M., Charged anisotropic matter with modified Tolman IV potential, Open Science Journal of Modern Physics, 2 (2015) 65-71
  • [17] Pandey P. K. and Jaboobb S. S., An efficient method for the numerical solution of Helmholtz type general two points boundary value problems in ODEs, International Journal of Mathematical Modelling & Computations, 6 (2016) 291-299
  • [18] Komathiraj K. and Maharaj S. D., A Class of charged relativistic spheres, Math. Comp. Appl. 15 (2010) 665
  • [19] Malaver M. and Kasmaei H.D., Relativistic stellar models with quadratic equation of state, International Journal of Mathematical Modelling & Computations, 10 (2020) 111-124
  • [20] Karami M., Using PG elements for solving Fredholm integro-differential equations, International Journal of Mathematical Modelling & Computations, 4 (2014) 331-339
  • [21] Adibi H. and Taherian A., Numerical Solution of the most general nonlinear fredholm integro-differential-difference equations by using Taylor polynomial approach, International Journal of Mathematical Modelling & Computations, 2 (2012) 283-298
  • [22] Dube R., Heat transfer in three-dimensional flow along a porous plate, International Journal of Mathematical Modelling Computations, 9 (2019) 61-69
  • [23] Komathiraj K., Sharma R., Das S. and Maharj S D., Generalized Durgapal–Fuloria relativistic stellar models, Journal of Astrophysics and Astronomy, 40 (2019) 37
  • [24] Komathiraj K. and Sharma R., Electromagnetic and anisotropic extension of a plethora of well- known solutions describing relativistic compact objects, Astrophysics and Space Science, 365 (2020) 181.
  • [25] Thirukkanesh S. and Ragel F.C., Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352 (2014) 743-749
  • [26] Malaver M. and Kasmaei H. D., Analytical Models for Quark Stars with Van Der Waals Modified Equation of State, International Journal of Astrophysics and Space Science, 7 (2019) 58-67
  • [27] Mak M. K. and Harko T., Quark stars admitting a one-parameter group of conformal motions, International Journal of Modern Physics D, 13 (2004) 149
  • [28] Komathiraj K. and Maharaj S. D., Analytical models for quark stars, International Journal of Modern Physics D, 16 (2007) 1803-1811
  • [29] Maharaj S. D., Sunzu J. M. and Ray S., Some simple models for quark stars, European Physical Journal Plus, 129 (2014) 3
  • [30] Komathiraj K., Analytical models for quark stars with the MIT Bag model equation of state. World Scientific News 153 (2021) 205-215
  • [31] Sunzu J. M., Maharaj S. D. and Ray S., Quark star model with charged anisotropic matter, Astrophysics and Space Science, 354 (2014) 517-524
  • [32] Dev K. and Gliser M., Anisotropic Stars: Exact Solutions, General Relativity and Gravitation, 34 (2002) 1793-1818
  • [33] Esculpi M. and Aloma E., Conformal anisotropic relativistic charged fluid spheres with a linear equation of state, European Physical Journal C, 67 (2010) 521-532.
  • [34] Harko T. and Mak M. K., Anisotropic relativistic stellar models, Annalen Physics, 11 (2002) 3
  • [35] Mak M. K. and Harko T., Anisotropic stars in general relativity, Proc. Roy. Soc. Lond. A, 459 (2003) 393
  • [36] Kalam M., Usmani A. A., Rahaman F., Hossein M., Karar I. and Sharma R., A Relativistic Model for Strange Quark Star, International Journal of Theoretical Physics, 52 (2013) 3319-3328
  • [37] Durgapal M. C. and Bannerji R., New analytical stellar model in general relativity, Physical Review D, 27 (1983) 328
  • [38] Komathiraj K. and Maharaj S. D., Classes of exact Einstein-Maxwell solutions, General Relativity and Gravitation, 39 (2007) 2079-2093
  • [39] Thirukkanesh S. and Maharaj S. D., Some new static charged spheres, Nonlinear Analysis: Real World Applications, 10 (2009) 3396-3403
  • [40] Komathiraj K. and Sharma R., A family of solution to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres, Pramana - Journal of Physics, 90 (2018) 68
  • [41] Komathiraj K. and Sharma R., Generating new class of exact solutions to the Einstein–Maxwell system. Eur. Phys. J. Plus 136 (2021) 352
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.