Preferences help
enabled [disable] Abstract
Number of results
2015 | 20 | 7-17
Article title


Title variants
Languages of publication
Aim of the work was to prepare a method of producing chitosan and chitosan-alginate nanoparticles designed for the modification of textile cellulosic products in hygiene and medical application. Spectrophotometry was used in the estimation of the prepared nanoparticles; analyzed, too, was the particle size and antibacterial and antifungal activity.

Physical description
  • Institute of Biopolymers and Chemical Fibers ul. Skłodowskiej-Curie 19/27, 90-570 Łódź, POLAND,
  • Institute of Biopolymers and Chemical Fibers ul. Skłodowskiej-Curie 19/27, 90-570 Łódź, POLAND
  • Institute of Biopolymers and Chemical Fibers ul. Skłodowskiej-Curie 19/27, 90-570 Łódź, POLAND
  • Institute of Biopolymers and Chemical Fibers ul. Skłodowskiej-Curie 19/27, 90-570 Łódź, POLAND
  • Institute of Biopolymers and Chemical Fibers ul. Skłodowskiej-Curie 19/27, 90-570 Łódź, POLAND
  • University of Technology, Faculty of Material Technologies and Textile Design, ul. Żeromskiego 116, 90-924 Łódź,
  • 1Arora S. Jain J. Rajwade J. Paknikar K.; (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179.93–100.
  • 2. Chi Z. Liu R. Zhao L. Qin P. Pan X. Sun F. Hao X; (2009) A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta 72. 577–581. DOI: 10.1016/j.saa.2008.10.044
  • 3. Choi O. Hu Z; (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42. 4583–4588. DOI: 10.1021/es703238h
  • 4. Hwang E. Lee J. Chae Y. Kim Y. Kim B. Sang B. Gu M; (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4. 746–750.
  • 5. Kim J (2007) Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13. 718–722.
  • 6. Kim J. Kuk E. Yu K. Kim J. Park S. Lee H. Kim S. Park Y. Park Y. Hwang C. Kim Y. Lee Y. Jeong D. Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3. 95–101.
  • 7. Kim K. Sung W. Moon S. Choi J. Kim J. Lee D; (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18. 1482–1484.
  • 8. Kim Y. Kim J. Cho H. Rha D. Kim J. Park J. Choi B. Lim R. Chang H. Chung Y. Kwon I. Jeong J. Han B. Yu I; (2008) Twenty-eight-day oral toxicity. genotoxicity. and genderrelated tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20. 575–583. DOI:10.1080/08958370701874663
  • 9. Kvitek L. Panacek A. Soukupova J. Kolar M. Vecerova R. Prucek R. Holecova M. Zboril R; (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112. 5825–5834. DOI: 10.1021/jp711616v
  • 10. Lok C. Ho C. Chen R. He Q. Yu W. Sun H. Tam P. Chiu J. Che C; (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5. 916–924. DOI: 10.1021/pr0504079
  • 11. Raffi M. Hussain F. Bhatti T. Akhter J. Hameed A. Hasan M; (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24. 192–196.
  • 12. Schrand A. Braydich-Stolle L. Schlager J. Dai L. Hussain S; (2008) Can silver nanoparticles be useful as potential biological labels?. Nanotechnology 19. No23. 235104. DOI:10.1088/0957-4484/19/23/235104
  • 13. Sondi I. Salopek-Sondi B; (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275. 177–182. DOI: 10.1016/j.jcis.2004.02.012
  • 14. Vertelov G. Krutyakov Y. Efremenkova O. Olenin A. Lisichkin G; (2008) A versatile synthesis of highly bactericidal Myramistin stabilized silver nanoparticles. Nanotechnology 19. No23.
  • 15. Choi O. Deng K. Kim N. Ross L. Surampalli R. Hu Z (2008) The inhibitory effects of silver nanoparticles. silver ions. and silver chloride colloids on microbial growth. Water Res 42. 3066–3074.
  • 16. Cowan M. Abshire K. Houk S. Evans S; (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30. 102–106. DOI: 10.1007/s10295-002-0022-0
  • 17. Zhang Y. Peng H. Huang W. Zhou Y. Yan D; (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325. 371–376. DOI: 10.1016/j.jcis.2008.05.063
  • 18. Marambio-Jones C. Hoek EMV.; (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12. 1531 – 1551. DOI: 10.1007/s11051-010-9900-y
  • 19. Boholm M. Arvidsson R; (2014) Controversy over antibacterial silver: implications for environmental and sustainability assessments. J Cleaner Prod. 68. 135-143. DOI: 10.1016/j.jclepro.2013.12.058
  • 20. Blaser SA. Scheringer M. MacLeod M. Hungerbühler K.; (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the Total Environm. 390. 396-409. DOI: doi:10.1016/j.scitotenv.2007.10.010
  • 21. Rhoades J.. Roller S; (2000) Antimicrobial Actions of Degraded and Native Chitosan against Spoilage Organisms in Laboratory Media and Foods. Appl. Environ. Microbiol.. 66. 80-86. DOI:10.1128/AEM.66.1.80-86.2000
  • 22. No HK.. Park NY.. Lee SH.. Meyers SP; (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74. 65-72. DOI:10.1016/S0168-1605(01)00717-6
  • 23. Jeon YJ.. Park PJ.. Kim SK; (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym.. 44. 71-76. DOI:10.1016/S0144-8617(00)00200-9
  • 24. Gottfrield K.. Sztuka K.. Statroszczyk H.. Kołodziejska I.; (2010) Biodegradowalne i jadalne opakowania do żywności z polimerów naturalnych. Opakowanie. 8. 26–36.
  • 25. Smitha B.. Sridhar S. Khan AA; (2005) Chitosan-sodium alginate polyion complexes as fuel cell membranes. European Polym. J. 41. 1859-1866. DOI:10.1016/j.eurpolymj.2005.02.018
  • 26. Gierszewska-Drużbińska M. Ostrowska-Czubenko J; (2007) Synteza i właściwości membran hydrożelowych na podstawie chitozanu oraz alginianu sodu. Polimery 52. 517.
  • 27. Satori C. Finch DS. Ralph B. (1997) Determination of the cation content of alginate thin films by FTiR spectroscopy. Polymer 38. 43.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.