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ABSTRACT 

In this paper, we establish the existence and uniqueness criteria of time periodic solution to the 

viscous modified Degasperis-Procesi (vmDP for short) equation with periodic boundary value 

conditions. The analysis of this study is based on Galerkin’s method and Leray-Schauder fixed point 

theorem. Using Galerkin’s method some uniform priori estimates of approximate solution to the 

corresponding equation of vmDP has been constructed. Furthermore, the efficient and straightforward 

existence and uniqueness criteria of time periodic solution to the vmDP with periodic boundary value 

conditions has been obtained.  
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1.  INTRODUCTION 

 

The nonlinear partial differential equations have proved to be valuable tools to the 

modeling of many physical, chemical and biological phenomena. The study of the solitary wave 
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solutions for nonlinear partial differential equationsplay an important role in various fields, such 

as, quantum mechanics, electricity, plasma physics, chemical kinematics, optical fibers, 

biological model, electromagnetic field, viscoelasticity, electrochemistry, physics, control 

theory, fluid mechanics and population model [1-4], etc. In most of the cases, it is difficult to 

obtain the exact solution of these nonlinear partial differential equations. As a result, in the last 

few years different analytical methods have been developed, such as, Adomian decomposition 

method [5], the homotopy analysis method [6], the variational iteration method [7-9], the 

homotopy perturbation method [10-12], and variational homotopy perturbation method [13-

14], modified decomposition method [15], etc. 

In 2006, Wazwaz [16] studies a family of important physical equations which is known 

as modified k - equation and he provides the following form of that modified k - equation: 

 

  21 0t xxt x x xx xxxu u k u u ku u uu      ,                                (1) 

 

where, k  is a positive integer. By taking 3k  , Wazwaz [16] reduces Eq. (1) to the following 

modified Degasperis-Procesi (mDP) equation: 

 
24 3 0t xxt x x xx xxxu u u u u u uu     .                       (2) 

 

Wazwaz [17], proved that the Eq. (2) has the following solitary wave solution: 

 

  2 5
, 2sec .

2 4

x
u x t h t

 
   

 
                        (3) 

 

After Wazwaz [17], Eq. (2) has been also investigated by many researchers, see for 

instance [18-20] and references therein. Yousif et al. [20] studied the Eq. (2) using variational 

homotopy perturbation method and obtained the following solitary wave solution:  

 

  2 415 225 1 1
, sec sec tanh .

8 2 16 2 2

x
u x t h t h x x

     
       

     
                    (4) 

 

In this paper, we consider the following one-dimensional viscous version of mDP 

equation given by Eq. (2): 

 

                           (5) 

 

with the following periodic boundary conditions:  

 

                                                                                          (6) 

 

                                                                                     (7) 
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where 0   is a viscosity constant and the forcing term f is L - periodic in spatial x  

and  -periodic in time t . Without loss of generality, we assume that  , 0,f x t dx



 where 

 0, L Using different techniques, Foias et. al. [21], Gao and Shen [22] and Gao et. al. [23] 

have been studied the viscous version of modified Camassa-Holm equation which is obtained 

by setting 2k  in Eq. (1). Motivated by the works of Foias et. al. [21], Gao and Shen [22], Gao 

et. al. [23] and Fu and Guo [26] here we consider the Eq. (5) which we named as vmDP 

equation.  

Now a days, many researchers devoted themselves in the study of existence of time-

periodic solution to various nonlinear evolution equations, see for instance [23-26] and 

references therein. If a system is periodically dependent on time t , then there arises a natural 

question about the existence of time-periodic solution with same period for that system. 

Recently, E.E. 

Obinwanne and U. Collins [27] applied the Leray-Schauder fixed point theorem [24, 29] 

to obtain solution of Duffing’s equation. Moreover, to the best of our knowledge, there is no 

any work considering the existence and uniqueness of time-periodic solution to the Eqs. (5)-

(7), using Galerkin’s method [24, 28] and Leray-Schauder fixed point theorem [24, 29]. 

Therefore, the main purpose of this paper is to establish the existence and uniqueness criteria 

of time-periodic solution to the system given by Eqs. (5)-(7) using Galerkin’s method and 

Leray-Schauder fixed point theorem. 

The rest of this work is furnished as follows: 

In Section 2, we provide some basic definitions, inequalities and introduce Galerkin’s 

method and Leray-Schauder fixed point theorem. Section 3 is used to formulate some uniform 

priori estimates for the existence of approximate solution of the vmDP equation given Eqs. (5)-

(7), which will be apply in next section. Section 4 is devoted to state and prove the existence 

and uniqueness criteria of time-periodic solutions to the vmDP equation given by Eqs.(5)-(7). 

Finally, we give a conclusion. 

 

 

2. MATERIALS AND METHODS 

 

In this section, we introduce some necessary definitions and preliminary facts which will 

be used throughout this paper. 

 

Definition 2.1. ([30]). Let B be a Banach space. For 1 ,p    the space  ;pL B   is defined 

as the set of  -periodic B -measurable functions on ℝ such that  

 

 

 
1

0

;

0

, 1

sup , .
p

p
p

B

L B

B
t

u ds p
u

u p





 


    

 
   




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Definition 2.2. ([30]).The space  , ;h pW B  denote the set of functions which belong to 

 ;pL B  together with their derivatives up to order h , and if B is a Hilbert space, then we write 

   ,2 ; ;h hW B H B  . 

According to definitions 2.1 and 2.2, the following inequalities hold (see [30]):  

 

11 ,
H

u h u

                          (8) 

 
1

2 ,m

i

Hp
D u h u u

 
                         (9) 

 

where,  
1 1 1

, 1 , as 0 , 1.
2 2

i
i

i

u
D u i m i m i m

x p
  

  
          
    

 

 3 , 0.xu h u u x dx


                                   (10) 

 

Now, we state Leray-Schauder fixed point theorem which will be used as the tools to 

establish the main results. 

 

Theorem 2.1. (Leray-Schauder fixed point theorem [28]). Let B  be a Banach space and 

:T B B  be a completely continuous (continuous and compact) operator with the following 

property: there exists 0R   such that the statement (  0,1u rTu with r  ) implies 
B

u R . 

Then T  has a fixed point
*u such that *u R . 

Now we give a brief discussion on the Galerkin’s method.  

The Galerkin’s method is a very strong andgeneral method. The main idea of this method 

is as follows. To tackle a problem posed in an infinite dimensional space, start with a studying 

its approximation on a nested sequence of finite dimensional sub-spaces. Solving the 

approximate problem is generally simpler than solving the infinite dimensional one. Passing to 

the limit, we construct a solution of the original problem. Here we also introduce the Galerkin's 

method with an abstract problem posed as a weak formulation on a Hilbert space ,H  namely, 

 

findu H  such that for all    , ,v H a u v f v  . 

 

where  ., .a  is a bilinear form and  f v  is a bounded linear functional on .H  

Choose a subspace nH H of dimension n  and solve the projected problem: 

 

find n nu H  such that for all    , ,n n n n nv H a u v f v  .                              (11) 

 

The Eq. (11) is known as the Galerkin equation. Notice that the Eq. (11) has remained 

unchanged and only the spaces have changed. Reducing the problem to a finite-dimensional 

vector subspace allows us to numerically compute nu
  
as a finite linear combination of the basis 
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vectors in nH . The key property of the Galerkin approach is that the error is orthogonal to the 

chosen sub-spaces. Since nH H  , we can use 𝜈𝑛 
as a test vector in the original equation. 

Subtracting the two, we get the Galerkin orthogonality relation for the error 𝑒𝑛 = 𝑢 − 𝑢𝑛, 

which is the error between the solution of the original problem, u and the solution of the 

Galerkin equation, nu
 

 

         , , , 0n n n n n n na e v a u v a u v f v f v     . 

 

Since the aim of Galerkin's method is the production of a linear system of equations. 

Hence, we build its matrix form, which can be used to compute the solution algorithmically. 

Let 1 2 3, , , , nb b b b be a basis for nH .Then, it is sufficient to use these in turn for testing 

the Galerkin equation Eq. (11), that is: find n nu H  such that    , , 1,2,3, ,n i ia u b f b i n 
 

We expand nu  with respect to this basis, 
1

n

n j j

j

u u b


 and inserting it into the above 

equation we obtain that  

 

   
1 1

, , , 1,2,3, , .
n n

j j i j j i i

j j

a u b b u a b b f b i n
 

 
   

 
                               (12) 

 

The Eq. (12) is actually a linear system of equations of the form ,ij j iA u f  where 

 
1

, ,
n

ij j j j i

j

A u u a b b


  and  i if f b . 

 

 

3.  UNIFORM PRIORI ESTIMATES FOR THE EXISTENCE OF APPROXIMATE 

     SOLUTION 
 

In this section, we formulate some uniform priori estimates for the existence of 

approximate solution to the vmDP equation by applying Galerkin’s method and theorem 2.1. 

If we denote the unbounded linear operator by xxAu u   on  

 

    2 : , 0 ,B L u u x L u x udx


    
 

 

then we obtain a set of all linearly independent eigenvectors  
0
of , i.e., ,j j j jj

A A   



 with 

1 20 ,j       which form an orthogonal basis of  2L  . Now by Galerkin’s 

method, for any n  and a sequence of functions   
1

n

jn j
a t


, where    1C ; ,jna t R 
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 1,2,3, , ,j n we can say that the function    1

1

;
n

n

n jn j

j

u a t C H 


  is an 

approximate solution to the Eqs. (5) - (7) if itsatisfies the following equation: 

 

    , , , 1,2,3, , ,nt nxxt nxx nxxxx j n ju u u u Nu f j n                                    (13) 

 

where,  2

1 2 34 3 and , , , , .n n nx nx nxx n nxxx n nNu u u u u u u S span          By classical theory 

of ordinary differential equations, we can say that for any fixed 

     1

1

; ,
n

n

n jn j

j

v t b t C H 


  the equation 

 

    , , , 1,2,3, , ,nt nxxt nxx nxxxx j n ju u u u Nv f j n                                           (14) 

 

has a unique -periodic solution nu  and the mapping : n nT v u  is continuous and compact in 

 1 ;nC S  . Hence for proving the existence of the time periodic solution of Eq. (13) by 

applying theorem 2.1, it is enough to shown that the inequality
2

0

sup n
t

u c
 

  holds for all 

possible solutions of Eq. (13) and the nonlinear term nNu  is replaced by  , 0 1nNu   , 

where c  is a constant only depending on 1 2 3, , , , , , , .L h h h h f   

Now, we establish some lemmas which convey the required uniform priori estimators for 

the existence of approximate time periodic solution of (13).  

 

Lemma 3.1. If   1 1 ;f C H   , then  2 2

1
0

sup n nx
t

u u c
 

  , where 1c  is a constant only 

depending on  
    1

2

1 1 1
0

, , , , , , sup , min 2 ,2 0.
H

t

L f M f x t and d


      
 

 

     

 

Proof. Multiplying both sides of Eq. (13) by  jna t and summing up over j from 1 to n , we 

yield     , , ,nt nxxt nxx nxxxx n n nu u u u u Nu f u      which gives the following equation: 

 

     
2 2 2 21

, .
2

n nx nx nxx n n

d
u u u u Nu f u

dt
                                  (15) 

 

It is clear that  

 
3 24 0,3 0n nx n nx nxx n nxxxu u dx u u u dx u u dx

  
                                    (16) 

 

and 
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   

2 2

2

1

1 1

.
n n

nxx jn j j jn j n

j jxx

u a t dx a t dx u   
 

 

 
    

 
                                          (17) 

 

From the Young’s inequality, we have  

 

2

2 2
n nx

M
fu dx u




  ,                                  (18) 

 

where 0  is a constant. 

Combining Eqs. (15), (16) and inequalities (17) and (18), we obtain that  

 

   2 2 2 2

1 ,n nx n nx

d M
u u d u u

dt 
                                   (19) 

 

where  1 1min 2 , 2 0.d       

Applying the time periodicity of nu and integrating the inequality (19) over the closed 

interval 0, , we get  2 2

1
0

.n nx

M
d u u dt

 


  Thus there exists a  * 0,t  such that  

 

   
2 2

* *

1

.n nx

M
u t u t

d 
                                   (20) 

 

Hence from inequalities (19) and (20), we get 

 

 2 2
.n nx

d M
u u

dt 
                                   (21) 

 

Integrating the inequality (21) with respect to t  from 
*t to * *, ,t t t      

we have  

 

        
       

2 22 2 * *

2 22 2 * *

1 1

1
.

n nx n nx

n nx n nx

M
u t u t u t u t

M M M M
u t u t u t u t

d d





  


   

   

 
         

 

 

 

Therefore, we deduce that  

 

                               (22) 

 

This completes the proof. 
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Remark 3.1. From theorem 2.1 and lemma 3.1, we can conclude that the sequence  
1n n

u




represents the sequence of approximate solutions of Eq. (13) and hence the sequence  
1n n

u




also represents the sequence of approximate solutions to system given by Eqs. (5) - (7). 

 

Now, we find the convergence of the sequence  
1n n

u



of approximate solutions, and for 

this we need to establish a priori estimates for the high order derivers of that sequence 
1n n

u



. 

 

Lemma 3.2. If   1 1 ;f C H   , then  2 2

2
0

sup nx nxx
t

u u c
 

  , where 2c  is a constant only 

depending on 1 1 2 1, , , , , , , .L f h h and c     

 

Proof. Multiplying both sides of Eq. (13) by  j jna t and summing up over j from 1 to n , 

we yield     , , ,nt nxxt nxx nxxxx nxx n nxxu u u u u Nu f u     which gives the following 

equation: 

 

     
2 2 2 21

, .
2

nx nxx nxx nxxx n nxx

d
u u u u Nu f u

dt
                                  (23) 

 

From the Young’s inequality, we have  

 

2
,

2 2
nxx nxxx

M
fu dx u




                                   (24) 

 

where 0  is a constant and  
  1

2

0

sup ,
H

t

M f x t


 
 

 . 

Combining inequalities (8), (22) and Young’s inequality, we obtain that 

 

1

22 2

1

2 4 3
2 2 22 1 1 1 1

1 1 2

1 1

.
2 2 2 2

n nx nxx n n nx nxx n nx nxxH

nxx nx nxx

u u u dx u u u u dx h u u u dx

h c h c
h c u u u

h c

 

 

   
 

 
    

 

  
                            (25) 

 

Combining inequalities (9), (22), Cauchy-Schwarz inequality, Young’s inequality and 

lemma 3.1, we have 

 

3

3

2 1 2 3 22 1 2 2

1 24

3 8 3 8
2 2 21 2 1 2

13 3

1 1 1

2 2 2

3 3 3 3
.

4 64 4 4 4 64

n nxx nxxx nx nxx nx nxx n n H

n nxx nxxxH

u u u dx u u dx u u c h u u

c h c h
u c u u   

 

 
   

     

 

                             

(26) 
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Choosing   small enough such that 
15

4 2


  and using inequalities (24) - (26) in Eq. 

(23), we obtain  

 

   
4 2 8 3

2 2 2 2 1 1 1 2 1

3

3 9 3
.

2 32
nx nxx nxx nxxxx

h c c h cd M
u u u u

dt




  
                                  (27) 

 

Applying the time periodicity of nu and integrating the inequality (27) with respect to t

over the closed interval 0, , we get  
4 2 8 3

2 2 1 1 1 2 1

30

3 9 3
.

2 32
nxx nxxx

h c c h cM
u u dt

 
 

  

 
     

 


 
Thus there exists a  * 0,t  such that  

 

   
4 2 8 3

2 2
* * 1 1 1 2 1

3

3 9 31
.

2 32
nxx nxxx

h c c h cM
u t u t



   

 
     

 
                             (28) 

 

Hence from inequalities (27) and (28), we get 

 

 
4 2 8 3

2 2 1 1 1 2 1

3

3 9 3
.

2 32
nx nxx

h c c h cd M
u u

dt



  
                                   (29) 

 

Integrating the inequality (29) with respect to t  from 
*t to * *, ,t t t      

we have  

 

        

       

4 2 8 3
2 22 2 * * 1 1 1 2 1

3

4 2 8 3
2 22 2 * *1 1 1 2 1

3

4 2 8 3 4 2 8 3

1 1 1 2 1 1 1 1 2 1

3 3

3 9 3

2 32

3 9 3

2 32

3 9 3 3 9 3

2 32 2 32

nx nxx nx nxx

nx nxx nx nxx

h c c h cM
u t u t u t u t

h c c h cM
u t u t u t u t

h c c h c h c c h cM M




  




  

 


     

 
       

 

 
        

 

   
         
  

4 2 8 3

1 1 1 2 1

3

1

3 9 3 1
.

2 32

h c c h cM






   




  
      

  

 

 

Therefore, we deduce that  

 

                (30) 

 

This completes the proof. 
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In the following lemma, we continue the formation of priori estimates for the high order 

derivers of the approximation solution sequence 
1n n

u



by an inductive argument. 

 

Lemma 3.3. For any 0r  , if   1 1 ;rf C H   , then  2 2
1 2

0

sup ,r r

n n
t

D u D u b


 

 

 

where b  is a constant only depending on 1 2 3, , , , , , , , .L r h h h f    

 

Proof. If we consider 0r  , then lemma 3.3 is obviously hold from lemma 3.2.  Assume that 

for 10 1,r r   where 1 2,r   lemma 3.3 holds. By induction method to complete the proof of 

this lemma, we have to prove that the lemma is also hold for 1r r .  

Multiplying both sides of Eq. (13) by    1 1
1 1

1
r r

j jna t
 

 and summing up over j from 1 to 

n , we yield 

 

          1 1 11 1 1 1
2 2 2 21 1 2 11 2 2 31

1 1 , .
2

r r rr r r r

n n n n n n

d
D u D u D u D u Nu f D u

dt


                     (31) 

 

From the Young’s inequality, we have  

 

 1 1 1 1 1
2 22 1 1 3 3 11

.
2 2

r r r r r

n n nf D u dx D f D u dx D u D f




    

 
                (32) 

 

where 0  is a constant. 

Since the lemma is hold for 10 1,r r   then from inequalities (8), (10) and Young’s 

inequality, we obtain that 

 

 
1

1 1 1

1

1

1 1 1 1

1

1 1 1
1

1

1
2 1 1 12

1

0

1
2 1 1 1

1

0

2
2 2

2 21 32 1 1

1 1
4

r
r r i ri i

n nx n n r n nx n

i

r
r r r i ri i

n n n n n r n nx n

i

r r r ii i

n n n r n nxH

u u D u dx u C D u D u D u dx

u u D u D u dx u C D u D u D u dx

h h b
D u D u h u C D u D u




   

 



    

  


   



 
  

 

 
   

 

    

 

 

 

1

1

1

1
1

0

2
2

1 3 1, , , .

r
r

n

i

r

n

D u dx

D u b h h r 









 
 
 

 



                 

(33)  

 

and 
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 

 

1

1

1 1 1 1

1

1

2 1

1
1 3 1 31

1

0

2
3

1 12 , , , .

r

nx nxx n

r
r r r i ri i

nx n n r n n n

i

r

n

u u D u dx

u D u D u dx C D u D u D u dx

D u b r h L 






    

   




 

 



                             (34) 

 

Similarly, we also obtain that 

 

 

 

 

1

1 1 1

1

1

1 1 1 1

1 1

1 1 1 1 1 1

2 1

2
3 2 21

1
1 2 3 22 2

0

2
3 2 2 1 2 2

1 1 3, ,

r

n nxxx n

r r r

n n n r n n

r
r r r i ri i

r n n n r n n n

i

r r r r r r

n n n n n n

u u D u dx

u D u D u dx C Du D u dx

C D u D u D u dx C D u D u D u dx

b r h h D u D u dx D u dx D u D u dx D u





  

 


    

 


     

   

 

 
   

 

   



 

 

    .dx

(35) 

 

Again, since the lemma is hold for 10 1,r r   then from inequalities (9) and Young’s 

inequality, we get 

 

 

 
      

 

 

1 1

1 1 1 11
31

1
31

1 1

3 2

1 1 3

2 2 2 3 2 1 2 33

1 1 2 3

2 2 23

1 1 2 3

2 2
3 2

1 1 2 3

, ,

, , , ,

, , , ,

2 , , , , ,

r

r

r r

n n

r r r rr

n n nH

r

n n nH

r r

n n

b r h h D u D u dx

D u b r h h h u u

D u u b r h h h u

D u D u b r h h h

 

  

  





 



    



 

 

  

  



 
 

   
      

 

1 1 1 11
31

1 1

2 2 2 3 2 1 2 32

1 1 3 1 1 2 3

2 2
3 2

1 1 2 3

, , , , ,

, , , , ,

r

r r r rr

n n nH

r r

n n

b r h h D u dx b r h h h u u

D u D u b r h h h  



    



 



  



 
 

   

 

1 1 1 1

1

2 2
1 2 2 1

1 1 3 1 1 3

2
2

1 1 3

, , , , ,

, , , ,

r r r r

n n n n

r

n

b r h h D u D u dx D u b r h h D u

D u b r h h

 

 

   





 

 


 

 

and  

 

   1 1
2

2 2

1 1 3 1 1 3, , , , , , .
r r

n nb r h h D u dx D u b r h h L  


   
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Combining the above inequalities with the inequality (35), we have 

 

 
   1 1 1

2 22 1 3 2

1 1 2 33 4 , , , , ,
r r r

n nxxx n n nu u D u dx D u D u b r h h h L  
  


                     (36) 

 

Using inequalities (31)-(34) inthe inequality (36), we get  

 

   
 

1 1 1 1

1 1

2 2 2 2
1 2 2 3

2 2
3 2

1 1 2 3

2

15 14 , , , , , , .

r r r r

n n n n

r r

n n

d
D u D u D u D u

dt

D u D u b r h h h f L



  

   

 

  

  

                 (37) 

 

Choosing   small enough such that 15 ,   then from (37) we have 

 

     1 1 1 1
2 2 2 2

1 2 2 3

1 1 2 32 , , , , , , .r r r r

n n n n

d
D u D u D u D u b r h h h f L

dt
        (38) 

 

Applying the time periodicity of nu and integrating the inequality (38) with respect to t

over the closed interval  0, ,
 
we get 

 

   1 1
2 2

2 3

1 1 2 3
0

2 , , , , , , .
r r

n nD u D u dt b r h h h f L


   
 

 
 

Thus there exists a  * 0,t  such that  

 

   
 

1 1

2 2
1 1 2 32 3* *
, , , , , ,

.r r

n n

b r h h h f L
D u t D u t





                                (39) 

 

Hence from inequalities (38) and (39), we get 

 

    1 1
2 2

1 2

1 1 2 3, , , , , , .r r

n n

d
D u D u b r h h h f L

dt
       (40) 

 

Integrating the inequality (40) with respect to t  from 
*t to * *, ,t t t      

we have  

 

          

         

 

1 1 1 1

1 1 1 1

2 22 2
1 2 1 2* *

1 1 2 3

2 22 2
1 2 1 2* *

1 1 2 3

1 1 2 3

, , , , , ,

, , , , , ,

1
, , , , , , .

r r r r

n n n n

r r r r

n n n n

D u t D u t D u t D u t b r h h h f L

D u t D u t b r h h h f L D u t D u t

b r h h h f L

 

 

 


   

   

   

    

 
  

 
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Therefore, we deduce that  

 

                           (41) 

 

Thus, the lemma is hold for 1r r . This completes the proof. 

 

Lemma 3.4. For any 0r  , if   1 1 ;rf C H   , then  2 2
1

1
0

sup ,r r

nt nt
t

D u D u b




 

   

where 1b  is a constant only depending on 1 2 3, , , , , , , , .nL h h h h and f     

 

Proof. We first prove that the lemma is hold of 0r  , that is we prove that   1 1 ;f C H  

implies,  2 2

1
0

sup .nt nxt
t

u u b
 

   

Multiplying both sides of Eq. (13) by  jna t and summing up over j from 1to n , we get 

 

  
2 2

, .nt nxt n nxx nxxxx ntu u Nu f u u u                                   (42) 

 

Now by lemma 3.3, we have   1 1 ;f C H   implies, 4

2

1.n H
u b  Hence 

 

     1, .n nxx nxxxx nt n nxx nxxxx nt ntNu f u u u Nu f u u u b u                        (43) 

 

Combining Eq. (42) and inequality (43), we obtain that 

 

 2 2

1
0

sup .nt nxt
t

u u b
 

   

 

Thus, the lemma holds for 0r  . Now we assume that the lemma is hold for 10 ,r r   

where 1 1.r  By induction method to complete the proof of this lemma, we have to prove that 

the lemma is also hold for 1 1.r r   

Multiplying both sides of Eq. (13) by    1 1
1 1

1
r r

j jna t
   and summing up over j from 1 to 

n , we yield 

 

        1 11 1
2 21 2 11 2

1 , .
r rr r

nt nt n nxx nxxxx ntD u D u Nu f u u D u
  

                                 (44) 

 

Now by lemma 3.3, we have   1 21 ;rf C H   implies, 1 1, where 1.r

nD u b r r    

Hence  
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       1 1 1

1

2 1 1 1

1

1

,

.

r r r

n nxx nxxxx nt n nxx nxxxx nt

r

nt

Nu f u u D u D Nu f u u D u

b D u

 
  



      


                

(45) 

 

Combining Eq. (44) and inequality (45), we obtain that 

 

 1 1
2 2

1 2

1
0

sup .
r r

nt nt
t

D u D u b


 

 

   

 

Therefore, the lemma is hold for 1 1.r r   This completes the proof. 

 

 

4.  TIME-PERIODIC SOLUTION TO THE vmDP EQUATION 

 

This section is devoted to establish the existence and uniqueness criteria of time-periodic 

solutions to the vmDP equation given by Eqs. (5) - (7). 

We first we establish the existence of time periodic solution for vmDP equation given by 

Eqs. (5) - (7), for which we construct the following theorem. 

 

Theorem 4.1. For any   1 1 ; , 0,rf C H r  
 
there exist a time periodic solution of 

 ,u x t to Eqs. (5) - (7), such that        4 1,, ; ;r ru x t L H W H       . 

 

Poof. According to remark 3.1, we have the sequence 
1n n

u



is the sequence of approximate 

solution of Eqs. (5) - (7). So, to complete the proof of this theorem, we have only to prove that 

the sequence of approximate solution  
1n n

u



is converges and the limit of this sequence is 

       4 1,, ; ;r ru x t L H W H       . 

Using lemmas 3.1-3.4 and standard compactness arguments, we conclude that there is a 

subsequence  , 1,2,3, ,
knu k   , such that for any   1 1 ;rf C H   0,r  we get 

 

   , , ,
knu x t u x t weaklyin   4 ; ;rL H   

 
 

   , , ,
knu x t u x t strongly in   3 ; ,rL H   

 
 

   , , ,
kn t tu x t u x t weaklyin   1 ; ;rL H   

 
 

   , , ,
kn t tu x t u x t strongly in   ; ,rL H    

 

From the above discussion, it is clear that the nonlinear terms of Eq. (13) are well defined.  
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Thus 

 

   
22 2 2 2 2 0,n nx x n nx x x n n nx x x n nu u u u u u u u u u u u u u u u u u
  

          
 

as ,n uniformly in t . 

 

    0,nx nxx x xx nx nxx xx xx nx x nx nxx xx xx nx xu u u u u u u u u u u u u u u u
  

         
 

as ,n uniformly in t . 

 

11 0,n nxxx xxx n nxxx xxx n xxx n nxxx xxx n xxxH
u u uu u u u u u u u u u h u u u

  
         

as ,n uniformly in t . 

 

Therefore, it follows that  

 

     2, , ,t xxt xx xxxx peru u u u Nu f L         . 

 

Now applying the priori estimates obtained in the previous section, we can say that 

 ,u x t  satisfies the following vmDP equation 

 

 
 

Hence        4 1,, ; ;r ru x t L H W H       is the time periodic solution of 

vmDP equation given by Eqs. (5) - (7), which is also the converging limit of the sequence of 

approximate solution. This completes the proof. 

Now, we establish the uniqueness of time periodic solution of vmDP equation given by 

Eqs. (5) - (7), which is in following theorem. 

 

Theorem 4.2. Suppose that the hypothesis of theorem 4.1 holds. If  
  1

2

0

sup ,
H

t

M f x t


 
 



is sufficiently small, then the time periodic solution of Eqs. (5) - (7) obtained in theorem 4.1 is 

unique. 

 

Proof. Let    * *, and ,u u x t u u x t  betwo distinct time periodic solutions of Eqs. (5) - (7).  

If we set      *, , , ,v x t u x t u x t  then from Eq. (13), we get  

 

  *.t xxt xx xxxxv v v v Nu Nu                                     (46) 

 

Taking the inner product in both sides of Eq. (46) with v , we have 

 

     
2 2 2 2 *1

, .
2

x x xx

d
v v v v Nu Nu v

dt
                                  (47) 
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From inequality (10) and Eq. (47), we obtain 

 

   
2 2 2 2 2 *

2

3

1
, .

2 2 2
x x xx

d
v v v v v Nu Nu v

dt h

 
                       (48) 

 

Since 

 

      

   

2 *2 * 2 * *

2 2 2 2 2 2* * 2 2 1 2 1 2 2

1 1 1 1 2 1 1

4 4 , 4 , 4 ,

2 4 2 8 2 .

x x x x

x x x

u u u u v u v v u u vu v

u v v u u u v h c h c c v h c v
  

      

      

                 (49) 

 

     2 2 2 2* * * *

2 2 21 2 1 2 1 2

1 1 1 1 1 1

3 3 , 3

3 3 3 .

x xx x xx x xx x x x xx

x xx

u u u u v u v v u v u v v

h c v h c v h c v

  
     

  

                               (50) 

 

 

     

* * * 2 *

2 2 2 2 2 2 2* *

2 2 21 2 1 2 1 2 1 2 1 2

1 2 1 1 1 2 1 1 1 2

, 2 2

1 1
2

2 2

3 1 1 3
2 .

2 2 2 2

xxx xxx x xx x xx x x x xx

x xx x xx x x x xx

x xx

uu u u v u vv dx uv v dx u v dx u vv dx

u v v u v v u v u v v

h c v h c h c v h c h c v

   

   

    

      

   
       

   

   

                     

(51) 

 

Now, if M is sufficiently small such that 

 

2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2

1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 22

3

9 1 1 7
2 8 , 2 6 , .

2 4 2 4 2 2 2
h c h c c hc h c hc hc hc hc

h

  
       

       

(52) 

 

Combining the inequalities (48)-(52), we get 

 

   2 2 2 2
0,x x

d
v v v v

dt
                                    (53) 

 

where 0  is a suitable constant. 

Applying Gronwall’s inequality [31] in (53), we obtain that  

 

         2 2 2 2

0 0 , for any 0.t

x xv t v t v v e t                                 (54) 

 

Since v is  -periodic in t , then for any positive integer m  we have  

 

         2 2 2 2

.x xv t v t v t m v t m                                              (55) 
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From (54) and (55), we get 

 

           2 2 2 2

0 0 .
t m

x xv t v t v v e
  

    

 

Which gives us 

  

   0 0 0.xv v   

 

Hence    *, , ,u x t u x t  i.e., the time periodic solution of Eqs. (5) - (7) is unique. This 

completes the proof. 

 

 

5.  CONCLUSIONS 

 

In this study, we have proven the new existence and uniqueness criteria for time periodic 

solution to the vmDP equation applying the Galerkin’s method and Leray-Schauder fixed point 

theorem. The Leray-Schauderfixed point theorem helps us to determine the existence 

ofapproximate solution point withinthe uniform priori estimates, whereas uniform priori 

estimates of approximate solution of vmDP equation is constructed by using Galerkin’s method. 

Using theorem 4.1, one can easily be checked the existence of time periodic solution of vmDP 

equation given by Eq. (5)-(7) and theorem4.2 ensure the uniqueness of that time periodic 

solution. The established results provide an easy and straightforward technique to cheek the 

existence and uniqueness of time periodic solution to the vmDP equation. Furthermore, the 

results of this research extend the corresponding results of Foias et. al. [21], Gao and Shen [22] 

and Gao et. al. [23]. 
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