PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 142 | 25-43
Article title

Existence and Uniqueness of Time Periodic Solution to the Viscous Modified Degasperis-Procesi Equation

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we establish the existence and uniqueness criteria of time periodic solution to the viscous modified Degasperis-Procesi (vmDP for short) equation with periodic boundary value conditions. The analysis of this study is based on Galerkin’s method and Leray-Schauder fixed point theorem. Using Galerkin’s method some uniform priori estimates of approximate solution to the corresponding equation of vmDP has been constructed. Furthermore, the efficient and straightforward existence and uniqueness criteria of time periodic solution to the vmDP with periodic boundary value conditions has been obtained.
Discipline
Year
Volume
142
Pages
25-43
Physical description
Contributors
  • Department of Mathematics, Islamic University, Kushtia - 7003, Bangladesh
  • Department of Mathematics, University of Rajshahi, Rajshahi - 6205, Bangladesh
References
  • [1] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory. Nonlinear Physical Science, Springer-Verlag Berlin Heidelberg (2009).
  • [2] H. Resat, L. Petzold and M.F Pettigrew, Kinetic modeling of biological system. Methods Mol. Biol. 541(14) (2009) 311-335.
  • [3] J.F. Alzaidy, The fractional sub-equation method and exact analytical solutions for some nonlinear fractional PDEs. British J. Math. Comput. Sci. 3 (2013) 153-163.
  • [4] M. Kaplan, A. Bekir, A. Akbulut and E. Aksoy, The modified simple equation method for nonlinear fractional differential equations. Rom. J. Phys. 60(9-10) (2015) 1374-1383.
  • [5] G. Adomian, A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations. Computers & Mathematics with Applications 21 (1991) 101-127.
  • [6] S. Abbasbandy, Solitary Wave Solutions to the Modified Form of Camassa-Holm Equation by Means of the Homotopy Analysis Method. Chaos. Solitons and Fractals 39 (2009) 428-435.
  • [7] J.H.He, Variational Iteration Method a Kind of Non-Linear Analytical Technique: Some Examples. International Journal of Non-Linear Mechanics 34 (1999) 699-708.
  • [8] A.M. Wazwaz, The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations. Comput. Math. Appl. 54 (2007) 933-939.
  • [9] N. Faraz, Y. Khan and A. Yildirim, Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II. J. King Saud Univ.-Sci. 23(1) (2011) 77-81.
  • [10] J.H. He, Application of Homotopy Perturbation Method to Nonlinear Wave Equations. Chaos. Solitons Fractals 26 (2005) 695-700.
  • [11] M.M. Rashidi, N. Freidoonimehr, A. Hosseini, O. Anwar Bg, and T.K. Hung, Homotopy Simulation of Nanofluid Dynamics from a Non-Linearly Stretching Isothermal Permeable Sheet with Transpiration. Meccanica 49 (2014) 469-482.
  • [12] S. Gupta, J. Singh and D. Kumar, Application of homotopy perturbation transform method for solving time-dependent functional differential equations. Int. J. Nonlin. Sci. 16(1) (2013) 37-49.
  • [13] H.E. Fadhil, S.A. Manaa, A.M. Bewar, and A.Y. Majeed, Variational Homotopy Perturbation Method for Solving Benjamin-Bona-Mahony Equation. Applied Mathematics 6 (2015) 675-683.
  • [14] E.Olusola,New Improved Variational Homotopy Perturbation Method for Bratu-Type Problems. American Journal of Computational Mathematics 3 (2013), 110-113.
  • [15] A.M. Wazwaz, The modified decomposition method and Pade approximants for a boundary layer equation in unbounded domain. Appl. Math. Comput. 177 (2006) 737-744.
  • [16] A. M. Wazwaz. Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Phys. Lett. A 352 (2006)500-504.
  • [17] A. M. Wazwaz. New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations. Appl. Math. Comput 186 (2007) 130-141.
  • [18] Z. R. Liu, Z. Y. Ouyang. A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations. Phys. Lett. A 366 (2007) 377-381.
  • [19] Q. D. Wang, M. Y. Tang. New exact solutions for two nonlinear equations. Phys. Lett. A 372 (2008) 2995-3000.
  • [20] M.A. Yousif, B.A. Mahmood, F.H. Easif, A New Analytical Study of Modified Camassa-Holm and Degasperis-Procesi Equations. American Journal of Computational Mathematics 5 (2015) 267-273.
  • [21] C. Foias, D. D. Holm, E. S. Titi. The three dimensional viscous camassa-Holm equation and their relation to the Navier-Stokes equation and turbulence theory. J. Dynam. Differential Equations 14 (2002) 1-35.
  • [22] A. Gao, C. Shen. Optimal solution for the viscous modified Camassa-Holm equation. J. Nonlinear Math. Phys. 17 (2010) 571-589.
  • [23] A. Gao, C. Shen, and J. Yin, Periodic solution of the viscous modified Camassa-Holm equation. I. J. Nonlinear Sci. 18(1) (2014) 78-85.
  • [24] B. X. Wang. Existence of time periodic solutions for the Ginzburg-Landau equations of superconductivity. J. Math. Anal. Appl. 232 (1999) 394-412.
  • [25] H. Kato. Existence of periodic solutions of the Navier-Stokes equations. J. Math. Anal. Appl. 208 (1997) 141-157.
  • [26] Y. Fu and B. Guo. Time periodic solution of the viscous Camassa-Holm equation. J. Math. Anal. Appl 313 (2006) 11-321.
  • [27] E.E. Obinwanne and U. Collins. On application of Leray-Schauder fixed point and Scheafer’s lemma in solution of duffing’s equation. European Journal of Business and Innovation Research 6(2) (2018) 25-32.
  • [28] B.G. Galerkin and I.P. Scerzhni. Series Occurring in Some Problems of Elastic Equilibrium of Rods and Plates. Fed. Sci. Tech. Info. 19 (2015) 897-908.
  • [29] D.R. Smart, Fixed point theorems (Book).Cambridge University Press (1974).
  • [30] R.A. Adams. Sobolev Spaces. Academic Press, New York, NY, USA (1975).
  • [31] D. Henry, Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin-New York (1989).
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-fbf12262-b2fa-4333-9e00-ebba6f9bdcf1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.