PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 105 | 218-224
Article title

Synthesis and Characterization of Nanocomposite Sulfonated PVDF Membrane

Content
Title variants
Languages of publication
EN
Abstracts
EN
As a commercial fuel cell membrane, Nafion has disadvantages such as low stability at high temperature and low conductivity at low humidity. Sulfonated Polyvinylidene fluoride (PVDF) is known for good mechanical and thermal properties as a membrane. The purpose of this research is to synthesis a nanocomposite PVDF-TiSiO4 membrane as a potential replacement of Nafion. PVDF sulfonation was performed using concentrated sulfuric acid. The nanocomposites TiSiO4 were synthesized from TiCl4 and TEOS. Ultrasonification was used to insert the nanomaterial to the sulfonated membrane. The infrared spectra analysis shows the peak for the Ti-O-Si angel. SEM-EDX analysis shows that the nanocomposite PVDF-TiSiO4 membrane contents titanium oxide. The conductivity analysis shows the increasing of conductivity on addition of nanomaterials.
Year
Volume
105
Pages
218-224
Physical description
Contributors
  • Department of Chemistry, Universitas Padjadjaran, Jatinangor Sumedang 45363, Indonesia
author
  • Department of Chemistry, Universitas Padjadjaran, Jatinangor Sumedang 45363, Indonesia
  • Department of Chemistry, Universitas Padjadjaran, Jatinangor Sumedang 45363, Indonesia
  • Department of Chemistry, Universitas Padjadjaran, Jatinangor Sumedang 45363, Indonesia
author
  • Research Center for Chemistry, Indonesian Institute of Science, Bandung 40135, Indonesia
References
  • [1] Shin, D. W., Kang, N. R., Lee, K. H., Coo, D. H., Kim, J. H., Lee, W. H., Lee, Y. M., Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells. Journal of Power Sources 262 (2014) 162-168.
  • [2] Yekyung, K., Sung-Hee, S., In Seop, C. & Seung-Hyeon, M., 2014. Characterization of uncharged and sulfonatedporous poly(vinylidene fluoride) membranes and their performance in microbial fuel cells. Journal of Membrane Science 463 (2014) 205-214.
  • [3] Kim, D. J., Jo, M. J. and Nam, S. Y., A review of polymer–nanocomposite electrolyte membranes for fuel cell application. Journal of Industrial and Engineering Chemistry 21 (2015) 36-52.
  • [4] Sriram, K., Arthanareeswaran, G., Ismail, A. F. & Paul, D., Effects of special nanoparticles on fuel cell properties of sulfonated polyethersulfone membranes. International Journal of Polymeric Materials and Polymeric Biomaterials 65 (2016) 294-301.
  • [5] Das, S., Kumar, P., Dutta, K. & Kundu, P. P., Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell. Applied Energy 113 (2014) 169-177.
  • [6] Devrim, Y. and Devrim, H., PEM fuel cell short stack performances of silica doped nanocomposite membranes. International Journal of Hydrogen Energy 40 (2015) 7870-7878.
  • [7] Nagarale, R. K., W. Shina, P. K Singh, Progress in ionic organic-inorganic composite membranes for fuel cell application. Polymer Chemistry 1 (2010) 388-408.
  • [8] Heo, Y., H. Im, J. Kim, The effect of sulfonated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells. Journal of Membrane Science 425-426 (2013) 11-22.
  • [9] Kim, Y., S. Shin, Chang, Moon. 2013. Characterization of uncharged and sulfonated porous poly (vinylidene fluoride) membranes and their performance in microbial fuel cells. Journal of Membrane Science 463 (2014) 205–214.
  • [10] Jun, Y., Z. Hadiz, F. Michael, C. Zhongwei, Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy 36 (2011) 6073-6081.
  • [11] Mhisra, K. M., B. Saswata, K. Tapas, H. K. Nam, H. L. Joong, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Progress in Polymer Chemistry 37 (2012) 842-869.
  • [12] Devrim, Y., E. Serdar, B. Nurcan, and E. Inci, Improvement of PEMFC Performance with Nafion/Inorganic Nanocomposite Membrane Electrode Assembly Prepared by Ultrasonic Coating Technique. International Journal of Hydrogen Energy 37 (2012) 16748-16758.
  • [13] Walid, H. A., T. Kashiwagi, A. B. Morgan, J. M. Antonuchi, M. M. van Landingham, R. H. Harris, and J. R. Shields, Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 89 (2003) 2072–2078.
  • [14] Jal, P. K., M.Sudarshan, A.Saha, Sabita Patel, B.K.Mishra. Synthesis and characterization of nanosilica prepared by precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 240 (2004) 173-178.
  • [15] Jazarzadeh, M., Rahman, I. & Sipaut, C. Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. Journal of Sol-Gel Science Technology 50 (2009) 328-336.
  • [16] Farrokhzad, H., T.Kikhavani, F.Monnaie, S.N.Ashrafizadeh, G.Koeckelberghs, T.Van Gerven, B.Van der Bruggen, Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. Journal of Membrane Science 474 (2014) 167-174.
  • [17] Shahzadi, A., Ahmed, R. Shidiq, M., 2014. Synthesis and characterization of Nafion/SiO2 - MOx (M = Ti, Zr, W) nanocomposite membranes by sol-gel reaction for fuel cells. IOP Con. Ser. Materials Science and Engineering, 60 (2014) 012033.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-fb3d5d12-bd03-49bc-a9f6-ae5e7390faef
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.