PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 106 | 194-213
Article title

Modelling of Exciton-Polaritons

Content
Title variants
Languages of publication
EN
Abstracts
EN
To study the generation of exciton polaritons in a quantum well embedded in a semiconductor Fabry-Pérot microcavity with distributed Brag reflectors, a simple semi-classical auxiliary differential equation based model is proposed. The solutions are obtained using FDTD method considering only the excitations from ground to next excited states and one single QW resonance. The simulations are presented for GaAs quantum well in Al0.1Ga0.9As microcavity and a ZnS quantum well embedded in CdSe microcavity with 12 DBR layers on either side. Model is proved to be stable and agrees with properties of polarization associated with polariton dispersion. Results show that GaAs is a better quantum well material to generate polaritons than CdSe.
Discipline
Year
Volume
106
Pages
194-213
Physical description
Contributors
  • Department of Physics, University of Colombo, Sri Lanka
  • Department of Physics, University of Colombo, Sri Lanka
References
  • [1] J. Hopfield, Theory of the Contribution of Excitons to the Complex Dielectric, Phys. Rev. 112(5) (1958) 1555-1567.
  • [2] V. Agranovich, Dispersion of electromagnetic waves in crystals, JETP Lett, 430(1) (1959) 37.
  • [3] J. Hopfield, Resonant Scattering of Polaritons as Composite Particles, Phys. Rev. 182(3) (1968) 945-952.
  • [4] C. Weisbuch, M. Nishioka, A. Ishikava, and Y. Akarawa, Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69 (1992) 3314 –3317; C. Weisbuch, Electron vs photon quantinization: physics, applications, in Proceedings of the XXII International Conference on Physics of Semiconductors, D. J. Lockwood, ed. (World Scientific, Singapore, 1995) pp. 1839–1846.
  • [5] R. Houdre, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, Room-temperature cavity polaritons in a semiconductor microcavity, Phys. Rev. B 49 (1994) 16761–16763;
  • R. Houdre, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Measurement of cavitypolariton dispersion curve from angle resolved photoluminescence experiments, Phys. Rev. Lett. 73 (1994) 2043–2046;
  • J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdre, U. Oesterle, and R. P. Stanley, From Fermi’s golden rule to the vacuum Rabi splitting: magnetopolaritons in a semiconductor optical microcavity, Phys. Rev. Lett. 74 (1995) 3967–3970.
  • C. Fabry, A. Perot, Theorie et applications d'une nouvelle methode de spectroscopie interferentielle, Ann. Chim. Phys. 16(7) (1899) 115.
  • [6] V. Savona, L. C. Andreani, P. Schwendimann, A. Quattropani, Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes, Solid State Comm. 93 (9) (1995) pp. 733-739.
  • [7] L. C. Andreani, Confined Electrons and Photons: new Physics and Devices, edited by E. Burstein and C. Weisbuch (Plenum, 1994).
  • [8] M. Chen, Y. C. Chang, & W. F. Hsieh, Finite-difference time-domain analysis for the dynamics and diffraction of exciton-polaritons. Journal of the Optical Society of America A, 32(10) (2015) 1870-1875.
  • [9] Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays, Optics Express, 16(7) (2007) 4507-4519.
  • [10] S. Hellstrom, Exciton-plasmon interactions in semiconductor-metal nanostructures, 2012, KTH Royal Institute of Technology, Stockholm (PHD Thesis ISSN: 1654-2312, ISBN: 978-91-7501-301-5).
  • [11] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, (1992) 3314.
  • [12] Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations, Phys. Rev. Lett. 64 (1990) 2499.
  • [13] R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, C. Weisbuch. J. de Phys. IV, Coll. C5, 3 (1993), p. 51
  • [14] D. S. Citrin, Controlled exciton spontaneous emission in optical-microcavity-embedded quantum wells, IEEE J. Quant. Elect. 30(4) (1994) 997-1014.
  • [15] V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, Quantum theory of quantum-well polaritons in semiconductor microcavities, Phys. Rev. B 49 (1994) 8774.
  • [16] P. Harrison, Excitons in Bulk. In: Quantum Wells, Wires and Dots. Wiley Interscience, p. 190, (2005).
  • [17] G. Pavlovic, Exciton-Polaritons in Low-Dimensional Structures (Ph.D. Thesis, University of Blaise Pascal, 2011).
  • [18] E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii, Reflection and absorption spectra from microcavities with resonant Bragg quantum wells, J. Opt. Soc. Am. B/Vol. 13(5) (1996) 1061-1068.
  • [19] L. F. Almog, M.S. Bradley, V. Bulovic, The Lorentz Oscillator and its Applications, https://ocw.mit.edu/courses/electrical...and.../6.../MIT6_007S11_lorentz.pdf
  • [20] Y. Chen, A. Tredicucci, F. Bassani, Bulk exciton polaritons in GaAs microcavities. Phys. Rev. B 52(3) (1995) 1800-1805.
  • [21] M. R. Vladimirova, A. V. Kavokin, M. A Kaliteevski, Dispersion of bulk exciton polaritons in a semiconductor microcavity, Phys. Rev. B 54(20) (1996) 566-571.
  • [22] R. Zeyher, J. L. Birman, and W. Brenig, Spatial Dispersion Effects in Resonant Polariton Scattering. I. Additional Boundary Conditions for Polarization Fields, Phys. Rev. B 6 (1972) 4613.
  • [23] Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays, Optics Express, Vol. 16 (7) 4507-4519 (2008).
  • [24] K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14(3) (1966) 302-307.
  • [25] S. Zachary, D. Kingsland, R. Lee, J. Lee, A Perfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary Condition, IEEE Trans. Antennas Propag. 43(12) (1995) 1460-1463.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f9eb11ff-1279-40b3-9a76-b171fc38c408
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.