Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 14 | 2 | 117-123

Article title

Aktualny model immunopatogenezy stwardnienia rozsianego – nowe możliwości terapeutyczne

Content

Title variants

EN
Current model of immunopathogenesis of multiple sclerosis – new therapeutic options

Languages of publication

EN PL

Abstracts

EN
The aetiology of multiple sclerosis remains incompletely understood. In patients occurs both demyelination, inflammation, axonal damage and oligodendrocytes degeneration. The changes affect both white and grey matter, and also has been shown in normal appearing grey and white matter. However, it is well established that the immune system directly participates in the destruction of myelin and nervous cells and numerous abnormalities on the cellular and humoral response both in blood and cerebrospinal fluid were found in multiple sclerosis patients. The mechanisms leading to damage of the central nervous system are multifactorial. T lymphocytes play the key role, but B lymphocytes, macrophages and microglial cells are also included. Moreover, neurotoxic agents and metabolic disorders may lead to a direct damage of the central nervous system. The paper presents results of recent studies on the immunopathogenesis of multiple sclerosis and the various stages leading to damage to the central nervous system are discussed: the role of the activation of lymphocytes and antigen presenting cells both in blood and in the central nervous system, pass through the blood–brain barrier, the role of T cells and their respective subpopulations (Th1, Th2, and Th17), the importance of B cells, antibodies and the complement system and the mechanisms of demyelination and axonal damage. At the same time are discussed how drugs used in multiple sclerosis therapy affect different stages of the multiple sclerosis aetiopathogenesis, taking into account also the drugs which are at the clinical trials.
PL
Etiologia stwardnienia rozsianego nadal nie została jednoznacznie wyjaśniona. U chorych występują: demielinizacja, odczyn zapalny, uszkodzenie aksonów i degeneracja oligodendrocytów. Zmiany dotyczą zarówno istoty białej, jak i szarej, ponadto wykazano, że również w pozornie niezmienionej istocie białej i szarej występuje rozlane uszkodzenie tkanek mózgu. Obecnie przyjmuje się autoimmunologiczny charakter schorzenia, na co wskazuje obecność u chorych licznych nieprawidłowości dotyczących reakcji komórkowych i humoralnych we krwi oraz w płynie mózgowo-rdzeniowym. Mechanizmy prowadzące do uszkodzenia struktur ośrodkowego układu nerwowego są wieloczynnikowe. Kluczową rolę odgrywają limfocyty T, ale włączone są także limfocyty B, komórki mikrogleju i makrofagi. Istotne jest znaczenie zależnych od demielinizacji czynników neurotoksycznych oraz zaburzeń metabolicznych, które mogą prowadzić do bezpośredniego uszkodzenia struktur ośrodkowego układu nerwowego. W pracy przedstawiono wyniki najnowszych badań dotyczących immunopatogenezy stwardnienia rozsianego. Opisano poszczególne etapy zaburzeń prowadzących do uszkodzenia ośrodkowego układu nerwowego: aktywację limfocytów i rolę komórek prezentujących antygen zarówno we krwi, jak i w obrębie ośrodkowego układu nerwowego, przejście przez barierę krew–mózg, funkcję limfocytów T i ich poszczególnych subpopulacji (Th1, Th2, Th17), znaczenie limfocytów B, przeciwciał i układu dopełniacza oraz demielinizację i mechanizmy uszkodzenia aksonów. Jednocześnie omówiono, jak na poszczególne etapy etiopatogenezy stwardnienia rozsianego wpływają leki stosowane w terapii choroby, uwzględniając również najnowsze preparaty będące na etapie badań klinicznych.

Discipline

Year

Volume

14

Issue

2

Pages

117-123

Physical description

Contributors

  • Katedra i Klinika Neurologii, Uniwersytet Medyczny w Lublinie, ul. Jaczewskiego 8, 20-950 Lublin, tel.: 81 724 47 20

References

  • 1. Goodin D.S.: The causal cascade to multiple sclerosis: a model for MS pathogenesis. PLoS One 2009; 4: e4565.
  • 2. Lassmann H.: Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol. Appl. Neurobiol. 2011; 37: 698—710.
  • 3. Comabella M., Khoury S.J.: Immunopathogenesis of multiple sclerosis. Clin. Immunol. 2012; 142: 2-8.
  • 4. Filippi M., Rocca M.A., Horsfield M.A. i wsp.: Imaging cortical damage and dysfunction in multiple sclerosis. JAMA Neurol. 2013; 70: 556-564.
  • 5. Ceccarelli A., Rocca M.A., Falini A. i wsp.: Normal-appearing white and grey matter damage in MS. A volumetric and diffusion tensor MRI study at 3.0 Tesla. J. Neurol. 2007; 254: 513-518.
  • 6. Barnett M.H., Prineas J.W: Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 2004; 55: 458-468.
  • 7. Lucas R.M., Hughes A.M., Lay M.L. i wsp.: Epstein-Barr virus and multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2011; 82: 1142-1148.
  • 8. Zhang H., Podojil J.R., Luo X., Miller S.D.: Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. J. Immunol. 2008; 181: 4638-4647.
  • 9. Wu G.F., Alvarez E.: The immunopathophysiology of multiple sclerosis. Neurol. Clin. 2011; 29: 257-278.
  • 10. Tompkins S.M., Padilla J., Dal Canto M.C. i wsp.: De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol. 2002; 168: 4173-4183.
  • 11. Nitsch R., Pohl E.E., Smorodchenko A. i wsp.: Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J. Neurosci. 2004; 24: 2458-2464.
  • 12. Frohman E.M., Racke M.K., Raine C.S. i wsp.: Multiple sclerosis - the plaque and its pathogenesis. N. Engl. J. Med. 2006; 354: 942-955.
  • 13. Dittel B.N.: CD4 T cells: balancing the coming and going of autoimmune-mediated inflammation in the CNS. Brain Behav. Immun. 2008; 22: 421-430.
  • 14. El-behi M., Rostami A., Ciric B.: Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J. Neuroimmune Pharmacol. 2010; 5: 189-197.
  • 15. Pette M., Fujita K., Wilkinson D. i wsp.: Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multi-ple-sclerosis patients and healthy donors. Proc. Natl Acad. Sci. USA 1990; 87: 7968-7972.
  • 16. Derfuss T, Parikh K., Velhin S. i wsp.: Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl Acad. Sci. USA 2009; 106: 8302-8307.
  • 17. Brucklacher-Waldert V, Stuerner K., Kolster M. i wsp.: Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 2009; 132: 3329-3341.
  • 18. Viglietta V., Baecher-Allan C., Weiner H.L., Hafler D.A.: Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004; 199: 971-979.
  • 19. Jadidi-Niaragh F., Mirshafiey A.: Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol. Immunotoxicol. 2011; 33: 545-567.
  • 20. Bitsch A., Schuchardt J., Bunkowski S. i wsp.: Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 2000; 123: 1174-1183.
  • 21. Johnson A.J., Suidan G.L., McDole J., Pirko I.: The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology? Int. Rev. Neurobiol. 2007; 79: 73-97.
  • 22. O’Connor K.C., Appel C., Bregoli L. i wsp.: Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol. 2005; 175: 1974-1982.
  • 23. Ireland S., Monson N.: Potential impact of B cells on T cell function in multiple sclerosis. Mult. Scler. Int. 2011; 2011: 423971.
  • 24. Hauser S.L., Waubant E., Arnold D.L. i wsp.; HERMES Trial Group: B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 2008; 358: 676-688.
  • 25. Trapp B.D., Peterson J., Ransohoff R.M. i wsp.: Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 1998; 338: 278-285.
  • 26. Tallantyre E.C., Bø L., Al-Rawashdeh O. i wsp.: Clinico-patho-logical evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult. Scler. 2010; 16: 406-411.
  • 27. Trapp B.D., Stys P.K.: Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009; 8: 280-291.
  • 28. Luessi F., Siffrin V, Zipp F.: Neurodegeneration in multiple sclerosis: novel treatment strategies. Expert Rev. Neurother. 2012; 12: 1061-1076.
  • 29. Vercellino M., Masera S., Lorenzatti M. i wsp.: Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J. Neuropathol. Exp. Neurol. 2009; 68: 489-502.
  • 30. Calabrese M., Romualdi C., Poretto V. i wsp.: The changing clinical course of multiple sclerosis: a matter of gray matter. Ann. Neurol. 2013; 74: 76-83.
  • 31. Hulst H.E., Steenwijk M.D., Versteeg A. i wsp.: Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 2013; 80: 1025-1032.
  • 32. Choi S.R., Howell O.W., Carassiti D. i wsp.: Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012; 135: 2925-2937.
  • 33. Yong VW.: Differential mechanisms of action of interferon-P and glatiramer acetate in MS. Neurology 2002; 59: 802-808.
  • 34. Neuhaus O., Farina C., Yassouridis A. i wsp.: Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc. Natl Acad. Sci. USA 2000; 97: 7452-7457.
  • 35. Ziemssen T, KümpfelT, Klinkert W.E. i wsp.: Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 2002; 125: 2381-2391.
  • 36. SättlerM.B., Demmer I., Williams S.K. i wsp.: Effects of interferon-β-la on neuronal survival under autoimmune inflammatory conditions. Exp. Neurol. 2006; 201: 172-181.
  • 37. del Pilar Martin M., Cravens P.D., Winger R. i wsp.: Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. Arch. Neurol. 2008; 65: 1596-1603.
  • 38. Chiba K.: FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol. Ther. 2005; 108: 308-319.
  • 39. Nguyen T, Nioi P., Pickett C.B.: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009; 284: 13291-13295.
  • 40. Nakajima A., Yamanaka H., Kamatani N.: [Leflunomide: clinical effectiveness and mechanism of action]. Clin. Calcium 2003; 13: 771-775.
  • 41. Palmer A.M.: Teriflunomide, an inhibitor of dihydroorotate dehydrogenase for the potential oral treatment of multiple sclerosis. Curr. Opin. Investig. Drugs 2010; 11: 1313-1323.
  • 42. Wegner C., Stadelmann C., Pfortner R. i wsp.: Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2010; 227: 133-143.
  • 43. Bruck W, Wegner C.: Insight into the mechanism of laquinimod action. J. Neurol. Sci. 2011; 306: 173-179.
  • 44. Thone J., Ellrichmann G., Seubert S. i wsp.: Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am. J. Pathol. 2012; 180: 267-274.
  • 45. Bruck W., Pfortner R., Pham T. i wsp.: Reduced astrocytic NF-kB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol. 2012; 124: 411-424.
  • 46. Hao J., Campagnolo D., Liu R. i wsp.: Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann. Neurol. 2011; 69: 721-734.
  • 47. Kousin-Ezewu O., Coles A.: Alemtuzumab in multiple sclerosis: latest evidence and clinical prospects. Ther. Adv. Chronic Dis. 2013; 4: 97-103.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f98c24d7-a0d8-477c-8484-3e31673aefe5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.