PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 7 | 20-52
Article title

Modifications of natural rubber (Hevea brasiliensis): production, application and comparison

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents a method for obtaining the gel conductive systems being made of natural rubber (Hevea brasiliensis) (NR) and styrene-butadiene rubber (SBR). For this purpose, a natural rubber (Hevea brasiliensis), coming from a rubber tree plantation in Ranni, Kerala State, Southwest India, was used. Rubber latex was obtained by making incision in the trunk of Pará rubber tree and then collected, afterward being imported to Poland in 2006. Due to good quality and low price, styrene-butadiene rubber was used in the study as a mixture of 1,4-cis and -trans forms, composed of 77% butadiene and 23% styrene, No. KER® 1507, which was produced at the Dwory Chemical Plant S.A. near Oswiecim, Poland. This rubber was obtained in the process of low-temperature emulsion co-polymerisation. As an agent inducing conduction in the rubber systems, divalent metal chlorides, such as BaCl2, CaCl2, CdCl2, CoCl2, CuCl2, FeCl2, MgCl2, MnCl2, MoCl2, NiCl2, SnCl2, SrCl2, or ZnCl2 (manufactured by Chempur®, Poland), and sodium perchlorate, being obtained in the result of sodium hydroxide and perchloric acid synthesis, were used. Active carbon (NORIT® SX, manufactured by Chempur, Poland), with a 900m2g-1 active surface, was also used. For all systems with the divalent metal chlorides mentioned above, specific conductance was determined in the temperature range of 273ºK to 313ºK. The optimum quantities of doping agents in the form of divalent metal chlorides and active carbon being added to natural rubber (Hevea brasiliensis) and styrene-butadiene rubber were determined. It was found that specific conductance for the rubber systems with the addition of divalent metal chlorides and active carbon amounted to 10-4-10-7 Scm-1. On the other hand, specific conductance for sodium perchlorate and active carbon-doped rubbers amounted to 10-3-10-5 Scm-1. The capacitance values for the polymer compositions being doped with divalent metal chlorides are as follows: 8 F/g for the SBR system, and 28 F/g for the NR system.
Year
Volume
7
Pages
20-52
Physical description
Contributors
  • The Institute of Biopaleogeography named under Charles R. Darwin, 22 Mickiewicza Str., Złocieniec, Poland, tomasz.elvis.borowski@wp.pl
References
  • [1] The Nobel Prize in Chemistry 2000, October 10, 2000, The Royal Swedish Academy of Sciences, http://www.nobel.se/chemistry/laureates/2000/public.html
  • [2] Fenton D.E., Parker J.M., Wright P.V., Polymer 14 (1973) 589
  • [3] Wright P.V., Br. Polymer J. 7 (1975) 319
  • [4] Wright P., J. Polym. Sci., Polymer. Phis. Ed. 17 (1976) 14
  • [5] Armand M.B., Chabagno J.M., Duclot, Fast Ion Transport In Solids, New York, Amsterdam, Oxford, Elsevier (1979)
  • [6] Armand M.B., Chabagno J.M., Duclot, Extended Abstract, Second International Conference on Solid Electrolytes, St. Andrews, Scotland (1978).
  • [7] Armand M.B., Rev. Mater. Sci. 16 (1986) 245
  • [8] MacCallum J.R., Vincent C.A., Polymer Electrolyte Reviews, (Elsevier) London (1989)
  • [9] Wright P.V., J. Macromol. Sci. Chem. A26 (1989) 519
  • [10] Ratner M.A., Shriver D.F., Chem. Rev. 88 (1988) 109
  • [11] Kaner R.B., MacDiarmind A.G., Scientific American 2, 1988, 60
  • [12] Hall P.G., Davies G.R., McIntyre J.E., Ward I.M., Bannister D.J., LeBrocq K.M.F., Polym. Commun. 27 (1986) 98
  • [13] Xia D.W., Soltz D., Smid J., Solid State Ionics 14 (1984) 221
  • [14] Blonsky P.M., Shriver D.F., Austin P., Allcock H.R., J. Am. Chem. Soc. 106 (1984) 6854
  • [15] Fish D., Kachn D.M., Smid J., Polym. Prepr. 27 (1986) 325
  • [16] Blonsky P.M., Shriver D.F., Austin P., Allcock H.R., Solid State Ionics 18-19 (1986) 258
  • [17] Tonge J.S., Shriver D.F., J. Electrochem. Soc. 134 (1987) 269
  • [18] Allcock H.R., Austin P., Neeman T.X., Sisko J.T., Blonsky P.M., Shriver D.F., Macromolecules 19 (1986) 19
  • [19] Cowie J.M.G., Martin A.C.S., Polym. Commun. 23 (1985) 2181
  • [20] Ichimo T., Matsumoto M., J. Polym. Sci.: Part A Polym. Chem. 31 (1993) 589
  • [21] Donth E., Kretschmar H., Schulze G., Garg D., Horing S., Ulbricht J., Acta Polym. 20 (1987) 223
  • [22] Wang Q., He L., Polymer 38 (1997) 3931
  • [23] Giles J.R.M., Gray F.M., MacCallum J.R., Vincent C.A., Polymer 28 (1987) 1997
  • [24] Amiji M., Park K., J. Colloid and Interface Sci. 155 (1993) 251
  • [25] Kim C., Lee G., Liou K., Ryu K.S., Kang S-G., Chang S.H., Solid State Ionics 123 (1999) 251
  • [26] Linden E., Owen J.R., Solid State Ionics 28-30 (1988), 994
  • [27] Lobitz P., Fullbier H., Reiche A., Illner J.C., Reuter H., Horing S., Solid State Ionics 58 (1992) 223
  • [28] Fauteux D., Maassucco A., McLin M., Van Buren M., Shi J., Electrochim. Acta 13-14 (1995) 2185
  • [29] Abraham K.M., Alamgir M., J. Power Sources 43-44 (1993) 195
  • [30] Abraham K.M., Alamgir M., J. Electrochem. Soc. 137 (1990) 1657
  • [31] Abraham K.M., Alamgir M., Chem. Mater. 3 (1991) 339
  • [32] Alamgir M., Moulton R.D., Abraham K.M., Primary and Secondary Lithium Batteries, Proc. Vol. 91-93, The Electrochemical Society, Pennington NJ, USA, 131
  • [33] Feullade G., Perche Ph., J. Appl. Electrochem. 5 (1975) 63
  • [34] Kovać M., Gagerśćek M., Grdadolnik J., Electrochim. Acta 44 (1998) 863
  • [35] Algamir M., Abraham K.M., Litium Batteries, New Materials, Developments and Perspectives, Amsterdam 1994
  • [36] Tsunemi K., Ohno H., Tsushida E., Electrochim. Acta 28 (1983) 591
  • [37] Tsunemi K., Ohno H., Tsushida E., Electrochim. Acta 28 (1983) 833
  • [38] Bandara L.R.A.K., Dissanayake M.A.K.L., Mellander B.E., Electrochim. Acta, 43 (1998), 1447
  • [39] Gray F.M., Solid Polymer Electrolytes, New York, Weinhein, Germany, 1991
  • [40] Abraham K.M., Applications of Electroactive Polymers, Chapman and Hall, London 1993
  • [41] Abraham K.M., Alamgir M., J. Power Sources 43-44 (1993) 195
  • [42] Passerini S., Rosolen J.M., Scrosati B., J. Power Sources 45 (1993) 333
  • [43] Huang H., Chen L., Huang X., Xue R., Electrochim. Acta 37 (1992) 1671
  • [44] Kim H.S., Cho B.W., Kim J.T., Yun K.S., Chun H.S., J. Power Sources 62 (1996) 21
  • [45] Akashi H., Tanaka K., Sekai T., J. Electrochem. Soc. 145 (1998) 881
  • [46] Akashi H., Tanaka K., Sekai T., Electrochim. Acta 43 (1998) 1193
  • [47] Alagmir M., Abraham K.M., J. Electrochem. Soc. 140 (1993) L 96
  • [48] Abraham K.M., Choe H.S., Pasquarillo D.M., Electrochim Acta 43 (1998) 2399
  • [49] Peramunge D., Pasquarello D.M., Abraham K.M., J. Electrochem. Soc. 142 (1995) 1789
  • [50] Peramunge D., Abraham K.M., J. Electrochem. Soc. 145 (1998) 2615
  • [51] Lewandowski A., Stępniak I., Solid State Ionics 128 (2000) 145
  • [52] Lewandowski A., Stępniak I., Solid State Ionics 111 (1998) 99
  • [53] Lewandowski A., Stępniak I., Majchrzak I., Solid State Ionics 120 (1999) 135
  • [54] Stevens J.R., Wieczorek W., Raducha D., Jeffrey K.F., Solid State Ionics 97 (1997) 347
  • [55] Daniel F.M., Desbat B., Lassegues J.C., Solid State Ionics 28-30 (1988) 632
  • [56] Daniel F.M., Desbat B., Cruege F., Solid State Ionics 28-30 (1988) 637
  • [57] Przyłuski J., Wieczorek W., Połtarzewski Z., Recent Advances in Fast Ion Conducting Materials and Devices, World Scientific Publishing, Singapore 1990
  • [58] Dąbrowska A., Wieczorek W., Mat. Sci. And Eng. B22 (1994) 107
  • [59] Przyłuski J., Wieczorek W.,Głowinkowska S., Electrochim. Acta 37 (1992) 1733
  • [60] Przyłuski J., Dąbrowska A., Styś S., Solid State Ionics 60 (1993) 141
  • [61] Polak A., Petty-Weeks S., Beuhler A.J., Sensors and Actuators 9 (1986) 1
  • [62] Polak A., Petty-Weeks S., Beuhler A.J., Chem. Eng. News (1985) 28
  • [63] Defendini F., Armand M., Gorecki W., EX. Abstr., Electrochem. Society, San Diego Meet. (1986)
  • [64] Donoso P., Gorecki W., Berthier C., Solid State Ionics 28-30 (1988) 969
  • [65] Rodriguez D., Jegat C., Trinquet O., Solid State Ionics 61 (1993) 195
  • [66] Grondin J., Rodriguez D., Lassegues J.C., Solid State Ionics 77 (1995) 70
  • [67] Armand A., Deroo D., Pedone D., Proc. Int. Solid State Devicces, World Scientific Publishing, Singapore 1988, 120
  • [68] Ericson H., Svanberg C., Brodin A., Electrochim. Acta 45 (2000) 1409
  • [69] Żukowska G., Rogowska M., Weczkowska E., Solid State Ionics 119 (1999) 289
  • [70] Żukowska G., Zygadło-Monikowska E., Langwald N., J. Mat. Electrochem. Sys. 3 (2000) 51
  • [71] Vaivars G., Azens A., Granqvist C.G., Solid State Ionics 119 (1999) 269
  • [72] Vaivars G., Kleperis J., Azens A., Solid State Ionics 97 (1997) 365
  • [73] Vargas M.A., Vargas R.A., Mellander B.E., Electrochim. Acta 45 (2000) 1399
  • [74] Guinot S., Salmon E., Penneau J.F., Electrochim. Acta 43 (1998) 1163
  • [75] Salmon E., Guinot S., Godet M., J. Appl. Polym. Sci. 65 (1997) 601
  • [76] Fauvarque J.F., Patent PCT/WO 94/0616
  • [77] Fauvarque J.F., Guinot S., Bouzir N., Electrochim. Acta 40 (1995) 2449
  • [78] Vassal N., Salmon E., Fauvarque J.F., Electrochim. Acta 45 (2000) 1527
  • [79] Lewandowski A., Skorupska K., Polish J. Chem. 72 (1998) 2635
  • [80] Matsuo Y., Kuwano J., Solid State Ionics 79 (1995) 295
  • [81] Matsuo Y., Kuwano J., Kato M., Reports on Progress in Polym. Phys. in Japan 36 (1993) 325
  • [82] Matsuo Y., Kuwano J., Reports on Progress in Polym. Phys. in Japan 37 (1994) 407
  • [83] Matsuo Y., Kuwano J., Reports on Progress in Polym. Phys. in Japan 37 (1994) 411
  • [84] Wieczorek W., Such K., Chung S.H., J. Phys. Chem. 98 (1994) 9047
  • [85] Skaarup S., West K., Julian P., Solid State Ionics 40-41 (1990) 1021
  • [86] MacFarlane D.R., Newman P.J., Nairn K.M., Electrochim. Acta 43 (1998) 1333
  • [87] Płocharski J., Wieczorek W., Solid State Ionics 28-30 (1988) 979
  • [88] Płocharski J., Wieczorek W., Przyłuski J., Apply. Phys. A 49 (1989) 55
  • [89] Nicholson M.M., Pizzarello F.A., J. Electrochem. Soc. 126 (1979) 1490
  • [90] Collins G.C.S., Shiffrin D.J., J. Electroanal. Chem., 139 (1982), 335
  • [91] Jedeinstein P., Livage J., Zzaridansky A., Solid State Ionics 28-30 (1988) 1722
  • [92] Platt J.R., J. Chem. Phys. 34 (1961) 962
  • [93] Armand M., Deroo D., Pedone D., Int. Seminar Solid State Ionics, World Scientific Publishing, Singapore 1988, 515
  • [94] Grey F.M., Solid Polymer Electrolytes, VCH, New York, Weinheim, Cambridge, 1991
  • [95] Marsan B., Fauteux D., Vijh A.K., J. Electrochem. Soc. 134 (1987) 2508
  • [96] Skotheim T.A., Lundstrom I., J. Electrochem. Soc. 129 (1982) 894
  • [97] Inganas O., Skotheim T.O., Feldberg S.W., Solid State Ionics 18-19 (1986) 332
  • [98] Dautzenberg G., Croce F., Passerini S., Chem. Mater. 6 (1994) 538
  • [99] Appetecchi G.B., Croce F., Scrosati B., Electrochim. Acta 40 (1995) 991
  • [100] MacCallum J., Vincent C.A., Polymer Electrolyte Review I & II, Elsevier Sci. (1987)
  • [101] Scmutz C., Tarascon J.M., Gordz A.S., Electrochem. Soc. Meet. Miami, FL, 1994, Abstr. 109
  • [102] Vincent C.A., Chemistry in Britain, April (1981) 391
  • [103] Polak A.J., Peety-Weeks S., Buchler A.J., Sensor Actuators 9 (1986) 1
  • [104] Fabry P., Montero-Ocampo C., Armand M., Sensor Actuators, 15 (1988), 1
  • [105] Borroni-Bird C.E., Fuel Cell Commercializations, J. Power Sources, 61(1) (1998) 38-48
  • [106] Appleby A.J., Foulkes F.R., Fuel Cells Handbook, Van Nostrand Reinhold, 1989
  • [107] Blomen L.Jr.J., Mugerwa N.M., Fuel Cell Systems, Plenum Press, 1993
  • [108] Kordesch K., Simaden G., Fuel Cells and Their Applications, John Wiley & Sons, 1996
  • [109] Dyer C.K., Nature 343(8II) (1990) 347-348
  • [110] Parson E.A., Keith D.U., Fossil Fuels without Carbon Dioxide Emissions, Science 282 (1998) 1053-1054
  • [111] Fuel Cells; A Handbook, 4th edition, US Department of Energy, 1998
  • [112] Hryniewicz T., Chrzczonowicz M., An Experimental Elevated-Temperature Fuel Cell Working on Natural Gas, Bulletin of Electrochemistry 4(12) (1988) 1037-1040
  • [113] Hryniewicz T., Skubała W., Chrzczonowicz M., Porous Sinters for Elevated-temperature Natural-Gas Fuel Cells, Powder Technology 61 (1990) 217-223
  • [114] Lassegues J.C., Grondin J., Becker T., Solid State Ionics 77 (1995) 311
  • [115] Osaka T., Lui X, Nojima M., J. Power Sources 74 (1998) 122
  • [116] Lui X., Osaka T., J. Electrochem. Soc. 143 (1996) 3982
  • [117] Hashmi S.A., Latham R.J., Linford R.G., J. Chem. Soc. 93 (1997) 4177
  • [118] Osaka T., Lui X., Nojima M., J. Electrochem. Soc. 146 (1999) 1724
  • [119] Ingram M.D., Pappin A.J., Delalande F., Electrochem. Acta 43 (1998) 1601
  • [120] Matsuda Y., Morita M., Ishikawa M., J. Electrochem. Soc. 140 (1993) L109
  • [121] Matsuda Y., Inoue K., Takeuchi H., Solid State Ionics 113 (1998) 103
  • [122] Gomes Correia S.M., Zea Bermudez V., Silva M.M., Solid State Ionics 156 (2003) 85
  • [123] Himba T., Solid State Ionics 9-10 (1983) 1101
  • [124] Razali I., Glasse M.D., Latham R.J., J. Power Sources 94 (2001) 206
  • [125] Glasse M.D., Idris R., Latham R.J., Solid State Ionics 147 (2002) 289
  • [126] Hryniewicz T., Borowski T., New conductive polymers for batteries, International Conference on Vehicles Alternative Fuel Systems and Environmental Protection, No.: 182, Dublin, Ireland 2004.
  • [127] Tomasz Borowski, Journal of Power Sources 172 (2007) 988-990
  • [128] Tomasz Borowski, Materials Letters 62 (2008) 1382-1384
  • [129] Tomasz Borowski, Asian Journal of Chemistry 20(4) (2008) 3083-3088
  • [130] Tomasz Borowski, Asian Journal of Chemistry 20(7) (2008) 5721-5728
  • [131] Tomasz Borowski, Science and Engineering of Composite Materials 15(2) (2008) 159-164
  • [132] Tomasz Borowski, Molecular Crystals & Liquid Crystals 484(1) (2008) 127[493]-133[499]
  • [133] Tomasz Borowski, International Letters of Chemistry, Physics and Astronomy 2 (2012) 1-6.
  • [134] J. Borowski, T. Borowski, International Letters of Chemistry, Physics and Astronomy 4 (2013) 9-14.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f9401f36-7ece-408a-b089-2857f6481891
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.