Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 12 | 4 | 237-246

Article title

Wpływ stężeń terapeutycznych zyprazydonu na poziom wolnych tioli i związków reagujących z kwasem tiobarbiturowym w osoczu – badania in vitro

Content

Title variants

EN
The effects of therapeutic concentrations of ziprasidone on free thiols and thiobarbituric acid reactive substances levels in human plasma – in vitro studies

Languages of publication

EN

Abstracts

EN
The first and second generation antipsychotics may induce opposing effects on redox. Establishing the effects of antipsychotics on oxidative stress biomarkers is very important in clinical respect, because these drugs are used for the treatment of mental disorders in which oxidative stress occurs. Effects of ziprasidone on redox processes are not sufficiently known as yet. The study was aimed at establishing the effects of ziprasidone in doses recommended for mechatreatment of acute episode of schizophrenia on human plasma free thiols and thiobarbituric acid-reactive substances (TBARS) in in vitro model. Material and methods: Blood for the study was collected from 10 healthy male volunteers (aged 24-26 years) for ACD solution. Active substance of ziprasidone was dissolved in 0.01% dimethyl sulfoxide to the final concentrations (139 ng/ml and 250 ng/ml) and incubated with plasma for 24 hours at 37°C. Control samples were performed for each experiment (without the drug). The free thiols level was measured using the Ellman method, whereas the levels of thiobarbituric acid-reactive substances by spectrophotometric method (acc. to Rice-Evans, 1991). The results were analysed using the paired Student t-test (StatSoft Inc., Statistica v. 6.0). Results: In relation to control samples, ziprasidone in concentrations 139 ng/ml and 250 ng/ml after 24 hours’ incubation with plasma caused a statistically insignificant increase in the free thiols level in plasma (p>0.05), whereas in concentration 250 ng/ml – an increase in TBARS concentration by 27.6% (p=3.9×10-4). Conclusions: Ziprasidone in concentrations corresponding to doses used for treatment of acute episode of schizophrenia does not induce any significant increase in the free thiols level in plasma, simultaneously significantly increasing plasma lipid peroxidation.
PL
Leki przeciwpsychotyczne pierwszej i drugiej generacji mogą wywierać przeciwstawne działanie na procesy redoks: pro- lub antyoksydacyjne. Ustalenie wpływu leków przeciwpsychotycznych na biomarkery stresu oksydacyjnego ma duże znaczenie kliniczne, ponieważ leki te są stosowane w zaburzeniach psychicznych, w których występuje stres oksydacyjny. Działanie zyprazydonu na procesy redoks nie jest dostatecznie poznane. Celem badania było ustalenie wpływu zyprazydonu w dawkach rekomendowanych do leczenia ostrego epizodu schizofrenii na wolne tiole w ludzkim osoczu oraz na związki reagujące z kwasem tiobarbiturowym (TBARS) w modelu in vitro. Materiał i metody: Krew do badań pobrano od 10 zdrowych ochotników płci męskiej (w wieku 24-26 lat) na roztwór ACD. Substancję aktywną zyprazydonu rozpuszczono w 0,01% dimetylosulfotlenku do stężeń końcowych (139 ng/ml i 250 ng/ml) i inkubowano z osoczem przez 24 godziny w temperaturze 37°C. Do każdego doświadczenia wykonano próby kontrolne (bez leku). Oznaczenia poziomu wolnych tioli przeprowadzono metodą Ellmana, a stężenia związków reagujących z kwasem tiobarbiturowym – metodą spektrofotometryczną (wg Rice’a-Evansa, 1991). Do analizy wyników zastosowano sparowany test t-Studenta (StatSoft Inc., Statistica v. 6.0). Wyniki: W odniesieniu do prób kontrolnych zyprazydon w stężeniu 139 ng/ml oraz 250 ng/ml po 24 godzinach inkubacji z osoczem spowodował nieistotny statystycznie wzrost poziomu wolnych tioli w osoczu (p>0,05) oraz w stężeniu 250 ng/ml wzrost stężenia TBARS o 27,6% (p=3,9×10-4). Wniosek: Zyprazydon w stężeniach odpowiadających dawkom rekomendowanym do leczenia ostrego epizodu schizofrenii nie powoduje istotnego wzrostu poziomu wolnych tioli w osoczu, jednocześnie istotnie zwiększając peroksydację lipidów osocza.

Discipline

Year

Volume

12

Issue

4

Pages

237-246

Physical description

Contributors

  • Pracownia Badań Biologicznych w Psychiatrii, I Katedra Psychiatrii, Uniwersytet Medyczny w Łodzi, Klinika Zaburzeń Afektywnych i Psychotycznych, Uniwersytet Medyczny w Łodzi
author
  • Pracownia Badań Biologicznych w Psychiatrii, I Katedra Psychiatrii, Uniwersytet Medyczny w Łodzi
author
  • Katedra Biochemii Ogólnej, Uniwersytet Łódzki
  • Pracownia Badań Biologicznych w Psychiatrii, I Katedra Psychiatrii, Uniwersytet Medyczny w Łodzi

References

  • 1. Dietrich-Muszalska A., Kontek B.: Lipid peroxidation in patients with schizophrenia. Psychiatry Clin. Neurosci. 2010; 64: 469-475.
  • 2. Dietrich-Muszalska A., Olas B.: Isoprostanes as indicators of oxidative stress in schizophrenia. World J. Biol. Psychiatry 2009; 10: 27-33.
  • 3. Dietrich-Muszalska A., Olas B., Rabe-Jablonska J.: Oxidative stress in blood platelets from schizophrenic patients. Platelets 2005; 16: 386-391.
  • 4. Dietrich-Muszalska A., Olas B., Głowacki R., Bald E.: Oxidative/ nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology 2009; 59: 1-7.
  • 5. Lohr J.B., Kuczenski R., Bracha H.S. i wsp.: Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol. Psychiatry 1990; 28: 535-539.
  • 6. Yao J.K., Leonard S., Reddy R.D.: Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr. Bull. 2004; 30: 923-934.
  • 7. Parikh V., Khan M.M., Mahadik S.P.: Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res. 2003; 37: 43-51.
  • 8. Reinke A., Martins M.R., Lima M.S. i wsp.: Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci. Lett. 2004; 372: 157-160.
  • 9. Pillai A., Parikh V., Terry A.V. Jr, Mahadik S.P.: Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res. 2007; 41: 372-386.
  • 10. Bai O., Wei Z., Lu W. i wsp.: Protective effects of atypical antipsychotic drugs on PC12 cells after serum withdrawal. J. Neurosci. Res. 2002; 69: 278-283.
  • 11. Wei Z., Bai O., Richardson J.S. i wsp.: Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J. Neurosci. Res. 2003; 73: 364-368.
  • 12. Qing H., Xu H., Wei Z. i wsp.: The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+- induced apoptosis. Eur. J. Neurosci. 2003; 17: 1563-1570.
  • 13. Dietrich-Muszalska A., Kontek B., Rabe-Jabłońska J.: Quetiapine, olanzapine and haloperidol affect human plasma lipid peroxidation in vitro. Neuropsychobiology 2011; 63: 197-201.
  • 14. Schatzberg A.F., Nemeroff C.B. (red.): The American Psychiatric Publishing Textbook of Psychopharmacology. Wyd. 3, American Psychiatric Publishing, Inc., Arlington 2004.
  • 15. Stip E., Zhornitsky S., Moteshafi H. i wsp.: Ziprasidone for psychotic disorders: a meta-analysis and systematic review of the relationship between pharmacokinetics, pharmacodynamics, and clinical profile. Clin. Ther. 2011; 33: 1853-1867.
  • 16. Taylor D., Paton C., Kerwin R.: The Maudsley 2003 Prescribing Guidelines. Wyd. 7, Martin Dunitz, Taylor & Francis Group, London, New York 2003.
  • 17. Prakash C., Kamel A., Gummerus J., Wilner K.: Metabolism and excretion of a new antipsychotic drug, ziprasidone, in humans. Drug Metab. Dispos. 1997; 25: 863-872.
  • 18. Mauri M.C., Volonteri L.S., Colasanti A. i wsp.: Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin. Pharmacokinet. 2007; 46: 359-388.
  • 19. Miceli J.J., Wilner K.D., Hansen R.A. i wsp.: Single- and multiple- dose pharmacokinetics of ziprasidone under non-fasting conditions in healthy male volunteers. Br. J. Clin. Pharmacol. 2000; 49 supl. 1: 5S-13S.
  • 20. Sheehan D.V., Lecrubier Y., Sheehan K.H. i wsp.: The Mini- International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998; 59 supl. 20: 22-33.
  • 21. Rice-Evans C.A., Diplock A.T., Symons M.C.R.: Techniques in Free Radical Research. Vol. 22 serii: Burdon R.H., van Knippenberg P.H. (red.): Laboratory Techniques in Biochemistry and Molecular Biology. Elsevier, Amsterdam 1991: 51-100.
  • 22. Ellman G., Lysko H.: A precise method for the determination of whole blood and plasma sulfhydryl groups. Anal. Biochem. 1979; 93: 98-102.
  • 23. Bradford M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal. Biochem. 1976; 72: 248-254.
  • 24. Dietrich-Muszalska A., Olas B.: Modifications of blood platelet proteins of patients with schizophrenia. Platelets 2009; 20: 90-96.
  • 25. Berk M., Copolov D., Dean O. i wsp.: N-acetyl cysteine as a glutathione precursor for schizophrenia – a double-blind, randomized, placebo-controlled trial. Biol. Psychiatry 2008; 64: 361-368.
  • 26. Do K.Q., Trabesinger A.H., Kirsten-Krüger M. i wsp.: Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 2000; 12: 3721-3728.
  • 27. Dodd S., Dean O., Copolov D.L. i wsp.: N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin. Biol. Ther. 2008; 8: 1955-1962.
  • 28. Grima G., Benz B., Parpura V. i wsp.: Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia. Schizophr. Res. 2003; 62: 213-224.
  • 29. Huang T.L., Liou C.W., Lin T.K.: Serum thiobarbituric acidreactive substances and free thiol levels in schizophrenia patients: effects of antipsychotic drugs. Psychiatry Res. 2010; 177: 18-21.
  • 30. Karatas F., Karatepe M., Baysar A.: Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Anal. Biochem. 2002; 311: 76-79.
  • 31. Bindoli A., Rigobello M.P., Cavallini L. i wsp.: Decrease of serum malondialdehyde in patients treated with chlorpromazine. Clin. Chim. Acta 1987; 169: 329-332.
  • 32. Castagné V., Rougemont M., Cuenod M., Do K.Q.: Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat’s development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiol. Dis. 2004; 15: 93-105.
  • 33. Jacobsen J.P., Rodriguiz R.M., Mørk A., Wetsel W.C.: Monoaminergic dysregulation in glutathione-deficient mice: possible relevance to schizophrenia? Neuroscience 2005; 132: 1055-1072.
  • 34. Gama C.S., Salvador M., Andreazza A.C. i wsp.: Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in schizophrenia: a study of patients treated with haloperidol or clozapine. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006; 30: 512-515.
  • 35. Khan M.M., Evans D.R., Gunna V. i wsp.: Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr. Res. 2002; 58: 1-10.
  • 36. Mahadik S.P., Mukherjee S., Correnti E.E., Scheffer R.: Elevated levels of lipid peroxidation products in plasma of drug-naive patients at the onset of psychosis. Schizophr. Res. 1995; 15: 66.
  • 37. Medina-Hernández V., Ramos-Loyo J., Luquin S. i wsp.: Increased lipid peroxidation and neuron specific enolase in treatment refractory schizophrenics. J. Psychiatr. Res. 2007; 41: 652-658.
  • 38. Zhang X.Y., Tan Y.L., Cao L.Y. i wsp.: Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res. 2006; 81: 291-300.
  • 39. Sagara Y.: Induction of reactive oxygen species in neurons by haloperidol. J. Neurochem. 1998; 71: 1002-1012.
  • 40. Kropp S., Kern V., Lange K. i wsp.: Oxidative stress during treatment with first- and second-generation antipsychotics. J. Neuropsychiatry Clin. Neurosci. 2005; 17: 227-231.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f91494c3-d204-4efc-b1ed-4aa44b4b1b7c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.