PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 77 | 2 | 378-384
Article title

Bound State Solutions of the s-wave Schrodinger Equation for Generalized Woods-Saxon plus Mie-Type Nuclei Potential within the framework of Nikiforov-Uvarov Method

Content
Title variants
Languages of publication
EN
Abstracts
EN
The solutions of the Schrӧdinger equation with Generalized Woods-Saxon plus Mie-type potentials (GWSMP) have been presented using the Pekeris-like approximation of the coulomb term and parametric Nikiforov-Uvarov (NU) method. The bound state energy eigenvalues and the corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Special cases of potential consideration have also been discussed.
Discipline
Year
Volume
77
Issue
2
Pages
378-384
Physical description
Contributors
  • Physical/Theoretical Chemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, P.M.B 1115 Calabar, Cross River State, Nigeria
author
  • National Centre For Nanoscience and Technology, University of Chinese Academy of Sciences UCAS, Beijing, China
References
  • [1] S. H. Dong, Factorization Method in Quantum Mechanics, Springer, 2007
  • [2] X.-C. Zhang, Q.-W. Liu, C.-S. Jia and L.-Z. Wang. Phys. Lett. A 340, 59 (2005)
  • [3] S. M. Ikhdair and R. Sever. Phys. Scr. 79 (3), 035002 (2009)
  • [4] C. Berkdemir, A. Berkdemir and R. Sever. Phys. Rev. C 72, 027001 (2005)
  • [5] Candemir, N., Bayrak, O., Bound states of the Dirac equation for the generalized WoodsSaxon potential in pseudospin and spin symmetry limits. Mod. Phys. Lett. A29, 1450180 (2014).
  • [6] B. C. Lütfuoglu, F. Akdeniz and O. Bayrak. Phys. Scr. 90, 015302 (2015)
  • [7] B. I. Ita, H. Louis, T. O. Magu and N. A. Nzeata-Ibe. Bound state solutions of Klein-Gordon equation with Woods-Saxon plus Attractive Inversely Quadratic potential Via parametric Nikifarov-Uvarov method. World Scientific News 74 (2017) 280-287
  • [8] H. Louis, B.I. Ita, T. O. Magu and N. A Nzeata-Ibe. Bound state solutions of the Schrodinger equation with Manning-Rosen plus a class of Yukawa potential using pekeris-like approximation of the coulombic term and parametric Nikifarov-Uvarov method. World Scientific News 70(2) (2017) 312-319
  • [9] B. I. Ita, B. E. Nyong., H. Louis, T. O. Magu (2017). Radial solution of the s-wave Klein-Gordon equation for generalied wood-saxon plus Mie-type potential using Nikifarov-Uvarov. J. Chem. Soc. Nigeria, Vol. 41, No. 2, pp. 21-26
  • [10] H. Louis, B. I. Ita., B.E. Nyong, T. O. Magu, S. Barka and N.A. Nzeata-Ibe. Radial solution of the s-wave D-dimensional Non-Relativistic Schrodinger equation for generalized manning-Rosen plus Mie-type nuclei potentials within the framewoark of parametric Nikifarov-Uvarov Method. Journal of Nigerian Association of Mathematical Physics Vol. 36, No. 2, (2016) 193-198
  • [11] B. I. Ita, B.E. Nyong, N. O. Alobi, H. Louis and T. O. Magu. Bound State Solution of the Klein-Gordon Equation for Modified Echart Plus Inverse Square Molecular Potential with Improved new Approximation Scheme to Centrifugal Team. Equatorial Journal of Computational and Theoretical Sciemces, Volume 1, Issue 1, (2016) 55-64.
  • [12] B. I. Ita, A.I. Ikeuba, H. Louis and P. Tchoua. Solution of the Schrodinger equation with inversely quadratic Yukawa plus attractive radial potential using Nikiforov-Uvarov method. Journal of Theoretical Physics and Cryptography. Vol. 10, December, 2015
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f8b9517e-ee8a-4de9-a1de-7e63bbb76014
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.