Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 89-102

Article title

THE EFFECT OF A COMPOSITE CHITOSAN/COPPER(II) ION COATING ON THE CORROSION RESISTANCE OF GRADE 4 TITANIUM IN SALINE: PRELIMINARY RESULTS

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present work, we successfully used electrophoretic deposition to produce a new composite chitosan-copper(II) [Cu(II]) ion coating on grade 4 titanium (Ti). We prepared the coating with an environmentally friendly in situ chemical reduction process from a 2% (v/v) aqueous acetic acid solution with 1 g dm–3 chitosan and 10 g dm–3 copper acetate at 20 V for 300 s at room temperature. We evaluated the relationship between physicochemical properties and corrosion resistance of the coatings with energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, a scanning Kelvin probe, and electrochemical methods. The composite coating contained 2.1 ± 0.1 wt.% of Cu, which ensures antibacterial activity. We determined the mechanism and kinetics of the electrochemical corrosion of the composite chitosan–Cu(II) ion coating on grade 4 Ti in saline solution (0.9% sodium chloride) at 37°C. The surface modification makes grade 4 Ti a more attractive material for use in dentistry.

Year

Volume

28

Pages

89-102

Physical description

Contributors

  • Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
author
  • Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
  • Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland

References

  • [1] Mujawar NM, Anwar M, Debnath S, Sudin I; (2023) Fundamentals of Biomaterials: A Supplementary Textbook. 1st ed, Springer Nature, Singapore. DOI:10.1007/978–981–19–9300–8
  • [2] Su J, Chen X, Jing Y; (2023) Biomaterials effect on the bone microenvironment: Fabrication, regeneration, and clinical applications. 1st ed. Wiley-VCH GmbH, Weinheim, Germany. DOI:10.1002/9783527837823.fmatter
  • [3] Parau AC, Juravlea GA, Raczkowska J, Vitelaru C, Dinu M, Awsiuk K, Vranceanu DM, Ungureanu E, Cotrut CM, Vladescu A; (2023) Comparison of 316L and Ti6Al4V biomaterial coated by ZrCu-based thin films metallic glasses: Structure, morphology, wettability, protein adsorption, corrosion resistance, biomineralization. Appl Surf Sci 612, 155800. DOI:10.1016/j.apsusc.2022.155800
  • [4] Zatkalíková V, Halanda J, Vaňa D, Uhríčik M, Markovičová L, Štrbák M, Kuchariková L; (2021) Corrosion resistance of AISI 316L stainless steel biomaterial after plasma immersion ion implantation of nitrogen. Materials 14, 6790. DOI:10.3390/ma14226790
  • [5] Dudek K, Dulski M, Łosiewicz B; (2020) Functionalization of the NiTi shape memory alloy surface by HAp/SiO2/Ag hybrid coatings formed on SiO2-TiO2 glass interlayer. Materials 13, 1648. DOI:10.3390/ma13071648
  • [6] Osak P, Łosiewicz B; (2018) EIS study on interfacial properties of passivated Nitinol orthodontic wire in saliva modified with Eludril® mouthwash. Prot Met Phys Chem Surf 54(4), 680–688. DOI:10.1134/S2070205118040226
  • [7] Freitag M, Łosiewicz B, Goryczka T, Lelątko J; (2012) Application of EIS to study the corrosion resistance of passivated NiTi shape memory alloy in simulated body fluid. Solid State Phenom 183, 57–64. DOI:10.4028/www.scientific.net/SSP.183.57
  • [8] Lelątko J, Goryczka T, Wierzchoń T, Ossowski M, Łosiewicz B, Rówiński E, Morawiec H; (2010) Structure of low temperature nitrided/oxidized layer formed on NiTi shape memory alloy. Solid State Phenom 163, 127–130. DOI:10.4028/www.scientific.net/ssp.163.127
  • [9] Kajzer W, Szewczenko J, Kajzer A, Basiaga M, Jaworska J, Jelonek K, Nowińska K, Kaczmarek M, Orłowska A; (2021) Physical properties of electropolished CoCrMo alloy coated with biodegradable polymeric coatings releasing heparin after prolonged exposure to artificial urine. Materials 14, 2551. DOI:10.3390/ma14102551
  • [10] de Castro Girão D, Béreš M, Jardini AL, Filho RM, Silva CC, de Siervo A, de Abreu HFG, Araújo WS; (2020) An assessment of biomedical CoCrMo alloy fabricated by direct metal laser sintering technique for implant applications. Mater Sci Eng C 107, 110305. DOI:10.1016/j.msec.2019.110305
  • [11] Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Stach S; (2020) Effect of autoclaving time on corrosion resistance of sandblasted Ti G4 in artificial saliva. Materials 13, 4154. DOI:10.3390/ma13184154
  • [12] Osak P, Maszybrocka J, Kubisztal J, Łosiewicz B; (2022) Effect of amorphous calcium phosphate coatings on tribological properties of titanium grade 4 in protein-free artificial saliva. Biotribology 32, 100219. DOI:10.1016/j.biotri.2022.100219
  • [13] Osak P, Maszybrocka J, Zubko M, Rak J, Bogunia S, Łosiewicz B; (2021) Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications. Materials 14, 7536. DOI:10.3390/ma14247536
  • [14] Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Bogunia S, Ratajczak P, Aniołek K; (2021) Effect of temperature on electrochemically assisted deposition and bioactivity of CaP coatings on CpTi grade 4. Materials 14, 5081. DOI:10.3390/ma14175081
  • [15] Osak P, Maszybrocka J, Kubisztal J, Ratajczak P, Łosiewicz B; (2021) Longterm assessment of the in vitro corrosion resistance of biomimetic ACP coatings electrodeposited from an acetate bath. J Funct Biomater 12, 12. DOI:10.3390/jfb12010012
  • [16] Aniołek K, Łosiewicz B, Kubisztal J, Osak P, Stróż A, Barylski A, Kaptacz S; (2021) Mechanical properties, corrosion resistance and bioactivity of oxide layers formed by isothermal oxidation of Ti-6Al-7Nb alloy. Coatings 11, 505. DOI:10.3390/coatings11050505
  • [17] Stróż A, Dercz G, Chmiela B, Stróż D, Łosiewicz B; (2016) Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys Pol 130, 1079–1080. DOI:10.12693/APhysPolA.130.1079
  • [18] Szklarska M, Dercz G, Simka W, Łosiewicz B; (2014) A.c. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution. Surf Interface Anal 46(10–11), 698–701. DOI:10.1002/sia.5383
  • [19] Smołka A, Dercz G, Rodak K, Łosiewicz B; (2015) Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution. Arch Metall Mater 60(4), 2681–2686. DOI:10.1515/amm-2015–0432
  • [20] Łosiewicz B, Stróż A, Osak P, Maszybrocka J, Gerle A, Dudek K, Balin K, Łukowiec D, Gawlikowski M, Bogunia S; (2021) Production, characterization and application of oxide nanotubes on Ti–6Al–7Nb alloy as a potential drug carrier. Materials 14, 6142. DOI:10.3390/ ma14206142
  • [21] Stróż A, Łosiewicz B; Zubko M, Chmiela B, Balin K, Dercz G, Gawlikowski M, Goryczka T; (2017) Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater Charact 132, 363–372. DOI:10.1016/j.matchar.2017.09.004
  • [22] Stróż A, Dercz G, Chmiela B, Łosiewicz B; (2019) Electrochemical synthesis of oxide nanotubes on biomedical Ti13Nb13Zr alloy with potential use as bone implant. AIP Conf Proc 2083, 030004. DOI:10.1063/1.5094314
  • [23] Smołka A, Rodak K, Dercz G, Dudek K, Łosiewicz B; (2014) Electrochemical formation of self-organized nanotubular oxide layers on Ti13Zr13Nb alloy for biomedical applications. Acta Phys Pol 125(4), 932–935. DOI:10.12693/APhysPolA.125.932
  • [24] Łosiewicz B, Skwarek S, Stróż A, Osak P, Dudek K, Kubisztal J, Maszybrocka J; (2022) Production and characterization of the third-generation oxide nanotubes on Ti-13Zr-13Nb alloy. Materials 15, 2321. DOI:10.3390/ma15062321
  • [25] Avcu E, Baştan FE, Abdullah HZ, Ur Rehman MA, Avcu Y, Boccaccini AR; (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Prog Mater Sci 103, 69–108. DOI:10.1016/j.pmatsci.2019.01.001
  • [26] Szulc M, Lewandowska K; (2023) Biomaterials based on chitosan and its derivatives and their potential in tissue engineering and other biomedical applications - a review. Molecules 28, 247. DOI:10.3390/molecules28010247
  • [27] Raafat D, Sahl HG; (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotechnol 2(2), 186–201. DOI:10.1111/j.1751–7915.2008.00080.x
  • [28] Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales JD, Vázquez-Lepe M, Kovalenko Y, Sanchez IC, Luna-Bárcenas G; (2015) Chitosan/silver nanocomposites: synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 67, 242–251. DOI:10.1016/j.eurpolymj.2015.03.066
  • [29] Jiang W-Z, Cai Y, Li HY; (2017) Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol 312, 124–132. DOI:10.1016/j.powtec.2017.02.021
  • [30] Simchi A, Pishbin F, Boccaccini AR; (2009) Electrophoretic deposition of chitosan, Mater Lett 63(26), 2253–2256. DOI:10.1016/j.matlet.2009.07.046
  • [31] Szklarska M, Łosiewicz B, Dercz G, Maszybrocka J, Rams-Baron M, Stach S; (2020) Electrophoretic deposition of chitosan coatings on the Ti15Mo biomedical alloy from a citric acid solution. RSC Adv 10(23), 13386–13393. DOI:10.1039/d0ra01481h
  • [32] Kowalski P, Łosiewicz B, Goryczka T; (2015) Deposition of chitosan layers on NiTi shape memory alloy. Arch Metall Mater 60(1), 171–176. DOI:10.1515/amm-2015–0027
  • [33] Łosiewicz B, Dercz G, Szklarska M, Simka W, Łężniak M, Krząkała A, Swinarew A.; (2013) Characterization of electrophoretically deposited chitosan coatings on Ti13Zr13Nb alloy for biomedical applications. Solid State Phenom 203–204, 212–215. DOI:10.4028/www.scientific.net/ssp.203–204.212
  • [34] Vokhidova VR, Ergashev KH, Rashidova SSh; (2022) Synthesis and application of chitosan hydroxyapatite: a review. Prog Chem Appl Chitin Deriv 27, 5–34. DOI:10.15259/PCACD.27.001
  • [35] Hasnain MS, Beg S, Nayak AK; (2021) Chitosan in Drug Delivery. 1st ed. Elsevier Science, Berlin, Germany.
  • [36] Nuc Z, Dobrzycka-Krahel A; (2021) From chitin to chitosan – a potential natural antimicrobial agent. Prog Chem Appl Chitin Deriv 26, 23–40. DOI:10.15259/PCACD.26.003
  • [37] Tabesh E, Salimijazi HR, Kharaziha M, Mahmoudi M, Hejazi M; (2019) Development of an in-situ chitosancopper nanoparticle coating by electrophoretic deposition. Surf Coat Technol 364, 239–247. DOI:10.1016/j.surfcoat.2019.02.040
  • [38] Akhtar MA, Ilyas K, Dlouhý I, Siska F, Boccaccini AR; (2020) Electrophoretic deposition of copper(II)–chitosan complexes for antibacterial coatings. Int J Mol Sci 21, 2637. DOI:10.3390/ijms21072637
  • [39] Prado VJ, Vidal RA, Durán CT; (2012) Application of copper bactericidal properties in medical practice. Rev Med Chile 140(10), 1325–1332. DOI:10.4067/S0034–98872012001000014
  • [40] Shahidi F, Synowiecki J; (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39(8), 1527–1532. DOI:10.1021/jf00008a032
  • [41] Łosiewicz B, Popczyk M, Szklarska M, Smołka A, Osak P, Budniok A; (2015) Application of the scanning Kelvin probe technique for characterization of corrosion interfaces. Solid State Phenom 228, 369–382. DOI:10.4028/www.scientific.net/ssp.228.369
  • [42] ISO 10271:2021–02: Dentistry - Corrosion test methods for metallic materials.
  • [43] Lasia A; (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York. DOI:10.1007/978–1-4614–8933–7
  • [44] Eco Chemie BV; (2001) User Manual for Frequency Response Analysis (FRA) for Windows Version 4.9. Eco Chemie BV, Utrecht.
  • [45] Müller V, Piai JF, Fajardo AR, Fávaro SL, Rubira AF, Muniz EC; (2011) Preparation and characterization of zein and zein-chitosan microspheres with great prospective of application in controlled drug release. J Nanomater 2011, 928728. DOI:10.1155/2011/928728
  • [46] Lustriane C, Dwivany FM, Suendo V, Reza M; (2018) Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol 45(1), 36–44. DOI:10.5010/JPB.2018.45.1.036
  • [47] Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA; (2018) Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed Mater 13(2), 025009. DOI:10.1088/1748–605X/aa9dde
  • [48] Ahmed SB, Mohamed HI, Al-Subaie AM, Al-Ohali AI, Mahmoud NM; (2021) Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci Rep 11(1), 9540. DOI:10.1038/s41598–021–88907-z

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f7dd0f78-8ac6-4b57-9cc4-c014389fc002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.