Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 5-10

Article title

NEW ASPECTS OF THE ENZYMATIC BREAKDOWN OF CHITIN: A REVIEW

Content

Title variants

Languages of publication

EN

Abstracts

EN
This review focuses on the enzymatic breakdown of chitin, taking into account the latest scientific reports on the activity of lytic polysaccharide monooxygenase (LPMO). Chitin is a natural, abundant polysaccharide of great practical importance in the environment. However, the insolubility in water and the tightly packed crystalline structure of chitin pose a serious obstacle to enzymatic degradation. This substrate can be converted into soluble sugars by the action of glycosidic hydrolases (GH), also known as chitinases. LPMO could prove to be helpful in enzymatic processes that increase the rate of chitin depolymerisation by improving the availability of substrates for chitinases. The unique action of LPMO is based on the ability to catalyse the oxidative cleavage of glycosidic chains present in complex, resistant crystal networks of chitin, and this cleavage facilitates the subsequent action of glycolytic hydrolases.

Contributors

  • Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences
  • Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences
  • Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences

References

  • Swiontek Brzezinska, M., Jankiewicz U., Burkowska A., Walczak M., (2014) Chitinolytic Microorganisms and Their Possible Application in Environmental Protection. Curr Microbiol 68, 71–81, DOI:10.1007/s00284-013-0440-4.
  • Rinaudo M., (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 57(3), 397–430.
  • Filipkowska U., Jóźwiak T., Bugajska P., Skrodzka A., (2018) Effect of Chitin Modification on the Sorption Efficiency of Reactive Black 5 Dye. Rocznik Ochrona Środowiska, 20, 616–633.
  • Kurita K., (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26, 1921–1971.
  • Elieh-Ali-Komi D., Hamblin, M.R., (2016) Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. International journal of Advanced Research, 4(3), 411–427.
  • Müller G., Várnai A., Johansen K. S., Eijsink V. G., Horn S.J., (2015) Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol. Biofuels, 8, 187. DOI:10.1186/s13068-015-0376-y 8
  • Mutahir Z., Mekasha S., Loose J.S., Abbas F., Vaaje-Kolstad G., Eijsink V.G., Forsberg Z., (2018) Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. FEBS letters, 592,15, 2562–2571.
  • Itoh T, Kimoto H., (2019) Bacterial chitinase system as a model of chitin biodegradation. In: Yang Q, Fukamizo T (eds) Targeting chitin-containing organisms. Springer, Singapore, pp 131–150.
  • Cohen-Kupiec R., Chet I., (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277.
  • Vaaje-Kolstad G., Westereng B., Horn S.J., Liu Z., Zhai H., Sørlie M., Eijsink V.G., (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222.
  • Müller G., Várnai A., Johansen K.S., Eijsink V.G., Horn S. J. (2015). Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnology for Biofuels, 8.1, 187.
  • Walton P.H., Davies G.J., (2016) On the catalytic mechanisms of lytic polysaccharide monooxygenases. Current Opinion in Chemical Biology, 31,195–207.
  • Hamre A.G., Strømnes A.G.S., Gustavsen D., Vaaje-Kolstad G., Eijsink V.G., Sørlie M. (2019) Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity. Carbohydrate research, 473, 66–71.
  • Kruer-Zerhusen N., Alahuhta M., Lunin, V.V., Himmel, M.E., Bomble, Y.J., Wilson, D. B., (2017) Structure of a lytic polysaccharide monooxygenase and mutagenesis of key residues. Biotechnology for Biofuels, 10, 243.
  • Levasseur A, Drula E, Lombard V, Coutinho P.M., Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6(1), 41.
  • Manjeet K., Madhuprakash J., Mormann M., Moerschbacher B.M., Podile A.R., (2019) A carbohydrate binding module-5 is essential for oxidative cleavage of chitin by a multi-modular lytic polysaccharide monooxygenase from Bacillus thuringiensis serovar kurstaki. International journal of biological macromolecules, 127: 649–656.
  • Gregory R.C., Hemsworth G.R., Turkenburg J.P., Hart, S.J., Walton, P.H., Davies, G.J., (2016) Activity, stability and 3-D structure of the Cu(II) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens. Dalton transactions (Cambridge, England : 2003), 45(42), 16904–16912. https://doi.org/10.1039/c6dt02793
  • Valenzuela S.V., Ferreres G., Margalef G., Pastor F.I.J. (2017) Fast purifcation method of functional LPMOs from Streptomyces ambofaciens by afnity adsorption. Carbohydr Res 448:205–21.
  • Sabbadin F, Hemsworth G.R., Ciano L., Henrissat B., Dupree P., Tryfona T., Marques R.D.S., Sweeney S.T., Besser K., Elias L., Pesante G., Li Y., Dowle A.A., Bates R., Gomez L.D., Simister R., Davies G.J., Walton P.H., Bruce N.C., McQueen Mason S.J. (2018) An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature Commun 9,756.
  • Wang D., Li, J., Salazar-Alvarez G., McKee, L.S., Srivastava, V., Sellberg, J., Bulone, V., Hsieh, Y.S., (2018). Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green Chemistry, 20, 2091–2100.
  • Seidl V., Huemer, B., Seiboth, B. i Kubicek, C.P., (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. The FEBS J., 272, 5923–5939
  • Kobayashi D.Y., Reedy R.M., Bick J., Oudemans P.V., (2002) Characterization of a chitinase gene from . strain 34S1 and its involvement in biological control. Appl Environ Microbiol., 68(3), 1047–54. DOI:10.1128/aem.68.3.1047-1054
  • Jankiewicz, U., Baranowski, B., Swiontek Brzezinska, M., Frąk M. (2020). Purification, characterization and cloning of a chitinase from Stenotrophomonas rhizophila G22. 3 Biotech 10, 16, https://doi.org/10.1007/s13205-019-2007-y.
  • Hashimoto M., Ikegami T., Seino S.,(2000. Expression and Characterization of the Chitin-Binding Domain of Chitinase A1 from Bacillus circulans WL-12, Journal of Bacteriology, 182, 11, 3045–3054.
  • Chuang H., Lin H., Lin F (2008) Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis– implication of necessity for enzyme properties, FEBS Journal, 275, 9.
  • Ikegami T., Okada T., Hashimoto M. ( 2000) Solution Structure of the Chitin-binding Domain of Bacillus circulans WL-12 Chitinase A1. The Journal of Biological Chemistry, 275, 18, 13654–13661.
  • Saks E., Jankiewicz U., (2010) Aktywność chitynolityczna bakterii. Post. Bioch. 56, 427–434.
  • Yan Q., Fong S.S., (2015) Bacterial chitinase: nature and perspectives for sustainable bioproduction, Bioresources and Bioprocessing, 2, 31.
  • Kataeva I.A., Seidel R.D., Shah A., (2002) The Fibronectin Type 3-Like Repeat from the Clostridium thermocellum Cellobiohydrolase CbhA Promotes Hydrolysis of Cellulose by Modifying Its Surface. Applied And Environmental Microbiology, 68, 9, 4292–4300.
  • Bacik J.P., Mekasha, S., Forsberg Z., Kovalevsky A.Y., Vaaje-Kolstad G., Eijsink V.G., Chen J.C.H., (2017) Neutron and atomic resolution X-ray structures of a lytic polysaccharide monooxygenase reveal copper-mediated dioxygen binding and evidence for N-terminal deprotonation. Biochemistry, 56.20, 2529–2532.
  • Muthuramalingam S., Maheshwaran D., Velusamy M., Mayilmurugan R., (2019) Regioselective oxidative carbon-oxygen bond cleavage catalysed by copper (II) complexes: A relevant model study for lytic polysaccharides monooxygenases activity. Journal of Catalysis, 372, 352–361.
  • Frandsen, K.E.H., Lo Leggio, L., (2016) Lytic polysaccharide monooxygenases: A crystallographer’s view on a new class of biomass-degrading enzymes. IUCrJ 3, 448–467.
  • Loose J.S., Forsberg Z., Fraaije M.W., Eijsink V.G., Vaaje-Kolstad G., (2014) A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS letters, 588,18, 3435–3440

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f7a3b398-3621-45ff-a307-adcbffd7bb5d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.