Preferences help
enabled [disable] Abstract
Number of results
2021 | 157 | 154-168
Article title

Changes in the power (Watts) of the actinic light do not affect its better performance vs the ultraviolet light

Title variants
Languages of publication
Monitoring systems should be simple, time and cost effective, and collect as much information as possible, regarding the diversity of the communities under study. Most of studies use ultraviolet light traps to survey moths, although is known that the spectral sensitivity of moths has other wavelengths absorption peaks. As wider is the spectrum emitted by the lamps the wider is the fauna attracted and possible to be collected. The wider spectrum of actinic light, once it emits a large part of the ultraviolet wavelength as well as a peak at the blue, attracted more species than the ultraviolet light. In 2018 and 2019 the actinic light captured more species in 75% of the surveyed areas, while in 2020 in all areas. In 2018 and 2019, the power of the actinic light was 15 W and the ultraviolet light only 8 W. The actinic light trap captured, in 295 samples (50%), more species than the UV light trap which had a better performance in 201 samples (34%). In 2020 both light traps have the same power, 8 W, and results were similar, the actinic light collected more species in 123 samples (50%) than the ultraviolet light which in 48 samples (35%) collected more species than the actinic light.
Physical description
  • Narew National Park, Kurowo 10, 18-204 Kobylin Borzymy, Poland
  • [1] An J-S., Choi S-W. (2013). Forest moth assemblages as indicators of biodiversity and environmental quality in a temperate deciduous forest. Eur. J. Entomol. 110(3): 509-517
  • [2] Ashfaq M., Khan A., Ahsan Khan M., Rasheed F., Hafeez S. (2005). Insect orientation to various color lights in the agricultural Biomes of Faisalabad. Pak. Entomol. 27: 49-52
  • [3] Alison J., Duffield S. J., Morecroft M. D., Marrs R. H. and Hodgson J. A. (2017). Successful restoration of moth abundance and species-richness in grassland created under agri-envirnomental schemes. Biol. Conserv. 213: 51-58
  • [4] Axmacher J. C., Fiedler K. (2004). Manual versus automatic moth sampling at equal light sources – a comparison of catches from Mt. Kilimanjaro. J. Lepidopterists. Soc. 58: 196-202
  • [5] Baker R.R. and Sadovy Y. (1978). The distance and nature of the light trap response of moths. Nature 276: 818-821
  • [6] Barghini, A., Souza de Medeiros, B. A. (2012). UV radiation as an attractor for insects. Leukos, 9: 47-56
  • [7] Basset Y., Novotny V., Miller S. E., Weiblen G. D., Missa O., Stewart A. J. A. (2004). Conservation and biological monitoring of tropical forests: the role of parataxonomist. Journal of Applied Ecology, 41: 163-174
  • [8] Beck J., Linsenmair K. E. (2006). Feasibility of light-trapping in community research on moths: Attraction radius of light, completeness of samples, nightly flight times and seasonality of Southeast Asian hawkmoths (Lepidoptera: Sphingidae). Journal of Research on the Lepidoptera, 39: 18-37
  • [9] Brehm G. (2017). A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepi. 40(1): 87-108
  • [10] Briscoe A. D., Chittka L. (2001). The evolution of color vision in insects. Annu. Rev. Entomol. 46: 471-510
  • [11] Coddington J.A., Griswold C., Davila D., Pen- aranda E., Larcher S. (1991). Designing and testing sampling protocols to estimate biodiversity in tropical systems. In The Unity of Evolutionary Biology, Vol. 1: 44-46, (E. Dudley, ed.). Proc. Fourth Intern. Congr. Syst. Evol. Biol., Dioscorides Press, Portland, Oregon.
  • [12] Connor F.E., Simberloff D. (1978). Species number and compositional Similarity of the Galapagos Flora and Avifauna. Ecological Monographs 48: 219-248
  • [13] Cornell V.H. (1999). Unsaturation and regional influences on species richness in ecological communities: A review of the evidence. Écoscience 6(3): 303-315
  • [14] Cowan T., Gries G. (2009). Ultraviolet and violet light: attractive orientation cues for the Indian meal moth, Plodia interpunctella. Entomologia Experimentalis et Applicata, 131: 148-158
  • [15] Curtis, R. J., T. M. Brereton, R. L. H. Dennis, C. Carbone, N. J. B. Isaac, and S. Diamond (2015). Butterfly abundance is deter- mined by food availability and is mediated by species traits. Journal of Applied Ecology 62: 1676-1684
  • [16] Dodd E.L., Lacki J.M. (2007). Prey consumed by Corynorhinus towsendii ingens in the Ozark Moutain region. Acta Chiropterologica 9(2): 451-461
  • [17] Fayle M.T., Sharp R.E., Majerus E.N.M. (2007). The effect of moth trap type on cacth size and composition in Bristish Lepidoptera. Br. J. Ent. Nat. Hist. 20: 221-232
  • [18] BL Fisher,B.L. (1998). Insect behavior and ecology in conservation: Preserving functional species interactions. Ann. Entomol. Soc. Am. 91(2):155-158
  • [19] Fisher, M.R. 2011. Changes in macromoth community structure following deforestation in Western Washington State. Western Washington University.
  • [20] Frank K.D. (2006). Effects of artificial night lighting on moths. Ecological Consequences of Artificial Night Lighting (ed. By Rich C. and Longcore T.), pp. 305-344. Island Press, Washington, District of Columbia.
  • [21] Gotelli, N. J., Colwell. R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379-391
  • [22] Gossner M.M. (2009). Light intensity affects spatial distribution of Heteroptera in deciduous forests. EU. J. Entomol. 106: 241-252
  • [23] Grunsven H.A.R., Lham D., Geffen G.K., Veenendaal M.E. (2014) Range of attraction of a 6-W moth light trap. Ento. Exper. et Applicata 152: 87-90
  • [24] Hardie R.C. (1986). The photoreceptor array of the dipteran retina. Trends Neurosci. 9: 419-423
  • [25] Heip C. H. R., Herman P. M. J., Soetaert K. (1998). Indices of diversity and evenness. Océanis, 24(4): 61-87
  • [26] Highland S. A., Miller J. C., Jones J. A. (2013). Determinants of moth diversity and community in a temperate mountain landscape vegetation, topography, and seasonality. Ecosphere, 4(10): Article 129
  • [27] Hilt N., Fiedler K. (2006). Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how gradient are subfamilies and tribes? J. Biogeogr. 33: 108-120
  • [28] Howell J.F., Davis H.G. (1972). Protecting codling moths captured in sex-attractant traps from predaceous yellow-jackets. Environ. Ent. 1: 122-123.
  • [29] Horváth B. (2013). Diversity comparison of nocturnal macrolepidoptera communities (Lepidoptera: Macroheterocera) in different forest stands. Natura Somogyiensis, 23: 229-238.
  • [30] Horváth B., Tóth V., Lakatos F. (2016). Relation between canopy-layer traits and moth communities in sessile oak hornbeam forests. North-Western Journal of Zoology, 12(2): 213-219
  • [31] Ignatov I. I., Janovec J. P., Centeno P., Tobler M. W., Grados J., Lamas G., Kitching I. J. (2011). Patterns of richness composition, and distribution of sphingid moths along an elevational gradient in the Andes-Amazon region of southeastern Peru. Ann. Entomo. Soc. Am. 104(1): 68-76
  • [32] Infusino M., Brehm G., Marco C., Scalercio S. (2017). Assessing the efficiency of UV LEDs as light sources for macro-moth diversity sampling. European Journal of Entomology, 114: 25-33
  • [33] Infusino M., Scalercio S. (2018). The importance of beech forests as reservoirs of moth diversity in Mediterranean Basin (Lepidoptera). Fragmenta Entomologica 50(2): 161-169
  • [34] Johnsen S., Kelber A., Warrant E., Sweeney A. M., Widder A. E., Lee L. R., Hernadez- Andrés J. (2006). Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. The Journal of Expeimental Biology, 209: 789-800
  • [35] Jonason D., Frazén M., Ranius T. (2014). Surveying moths using light traps: effects of weather and time of year. PLoS ONE 9(3): e92453
  • [36] Jones D.T., Eggleton P. (2000). Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37: 191-203
  • [37] Kolligs D. (2000). Ökologische Auswirkungen künstlicher Licht- quellen auf nachtaktive Insekten, insbesondere Schmetter- linge (Lepidoptera). Faunistisch-Ökologische Mitteilungen Supplement 28: 1-136
  • [38] Komatsu M., Kurihara K., Saito S., Domae M., Masuya N., Shimura Y., Kajiyama S., Kanda Y., Sugizaki K., Ebina K., Ikeda O., Moriwaki Y., Atsumi N., Abe K., Maruyama T., Watanabe S., Nishino H. (2020). Managment of flying insect on the expressways through an academic-industrial collaboration: evaluation of the effect of light wavelengths and meteorological factors on insect attraction. Zoological Letters 6: 1-15
  • [39] Langeveld F., Ettema A.J., Donners M., WallisDeVries F.M. (2011). Effect of spectral composition if artificial light on the attraction of moths. Biological Conservation 144: 2274-2281
  • [40] Lawton J.H., Bignell E.D., Bolton B., Bloemers G.F., Eggleton P., Hammond P.M., Hodda M., Holt R.D., Larsen T.B., Mawdsley N.A., Stork R.D., Srivastava D.S., Watt A.D. (1998). Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72-76
  • [41] Lovett G. M., Burns A. D., Driscoll C. T., Jenkins C. J., Mitchell M. J., Rustad L., Shanley J. B., Likens G. E., Haeuber R. (2007). Who needs environmental monitoring? Front. Ecol. Environ. 5(5): 253-260
  • [42] Ludwig J. C. (2000). A survey of Macrolepidopteran moths near Vontay, Hanover County, Virginia. Banisteria, 15: 16-35
  • [43] Macgregor J.C., Pocock J.O.M., Fox R., Evans M.D. (2015). Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecological Entomology 40: 187-198
  • [44] Magurran, A.E., 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey, U.S.A., pp. 179.
  • [45] Malaque M. A., Maeto K., Ishii H. T. (2009). Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. App. Entomol. Zool. 44(1): 1-11
  • [46] Malkiewicz A. (2012). The geometrid moths of Poland, Vol. 1. Ennominae (Lepidoptera: Geometridae). Polish Taxonomical Society, Wrocław, pp. 270.
  • [47] Matos da Costa J. (2018). Preliminary studies toward an effective Macrolepidoptera Monitoring system in the forests of the Narew National Park, North-east Poland – ultraviolet vs actinic light Heath traps. World Scientific News 99: 193-214
  • [48] Merckx T. Slade M.E. (2014). Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conservation and Diversity 7: 453-461
  • [49] Molina T.F., Di Mare R.A. (2018) Variabilidade espaço-temporal de lepidóptera em duas localidades da região central do Rio Grande do Sul, Brasil (Insecta: Lepidoptera). SHILAP Revta. Lepid 46(182): 181-189
  • [50] Molloy P.P., Evanson M., Nellas A.C. Rist J.L., Marcus J.E., Koldewey H.J., Vicenct A.C.J. (2013). How much sampling does it take to detect trends in coral-reef habitat using photoquadrat surveys? Aquatic Conservation: Marine and Freshwater Ecosystems 23: 820-837
  • [51] Moulding D.J., Madejian J.J. (1979). Macrolepidopteran moths light-trapped in a New Jersey oak forest (Lepidoptera). Proc. Entomol. Soc. Wash. 81(1): 135-144
  • [52] Nowinszky L., Puskás J., Tar K., Hufnagel L., Ladámyi M. (2013). The dependence of normal and black light type trapping results upon the wingspan of moth species. Applied Ecology and Environmental Research, 11(4): 593-610
  • [53] Oliver I., Beattie A. J. (1996). Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecological Applications, 6(2): 594-607
  • [54] Ober K.H., Hayes P.J. (2010) Determinants of nocturnal Lepidopteran diversity and community structure in a conifer-dominated forest. Biodivers. Conserv. 19: 761-774
  • [55] Palting D.J. (2013). Preliminary assessment of the moth (Lepidoptera: Heterocera) fauna of Rincon de Guadalupe, Sierra de Bacadéhuachi, Sonora, Mexico. USDA Forest Service Proceedings RMRS-P-67.
  • [56] Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics 5: 285-307
  • [57] Peitsch D., Feitz A., Hertel H., de Souza J., Ventura D.F., Menzel R. (1992) The spectral input systems if hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. 170: 23-40
  • [58] Pickering J., Staples T. (2016). How to sample moth diversity efficiently in a seasonal environment. Southern Lepidopterist’s News 38(2): 142-147
  • [59] Rohr J. R., Mahan C. G., Kim K. C. (2007). Developing a monitoring program for invertebrates: guidelines and a case study. Conservation Biology, 21(2): 422-433
  • [60] Sayama K., Ito M., Tabucji K., Ueda A., Ozaki K., Hironaga T. (2012). Seasonal trends of forest moth assemblages in central Hokkaido, Northen Japan. Journal of the Lepidopterists’ Society, 66(1): 11-26
  • [61] Schmidt B. C., Roland J. (2006). Moth diversity in a fragmented habitat: importance of functional groups and landscape scale in the Boreal Forest. Ecology and Population Biology, 99(6): 1110-1120
  • [62] Schowlater T., Crossley D., Hargrove W. (1986). Herbivory in forest ecosystems. Annual Review of Entomology 31: 177-196
  • [63] Schwenk W.S., Stron M.A., Sillett S.T. (2010). Effects of bird predation on arthropod abundance and tree growth across an elevation gradient. J. Avian Biol. 41: 367-377
  • [64] Shuey A.J., Metzler H.E., Tungesvick K. (2012). Moth communities correspond with plant communities on midwestern (Indiana, USA) Sand Prairies and Oak Barrens and their degradation endpoints. Am. Midl. Nat. 167: 273-284
  • [65] Somers-Yeates R., Hodgson D., McGregor P. K., Spalding A. French-Constant R. H. (2013). Shedding light on moths: Shorter wavelengths attract noctuids more than geometrids. Biol. Let 9: 20130376
  • [66] Southwood T. R. E., Henderson P. A. (2000). Ecological methods. Blackwell Science Ltd., Oxford, pp. 575.
  • [67] Shuey J. A., Metzler E. H., Tungesvick K. (2012). Moth communities correspond to plant communities in midwester (Indiana, USA) sand prairies and oak barrens and their degradation endpoints. Am. Midl. Nat. 167: 273-284
  • [68] Summerville K. S., Jacquot J. J., Stander F. R. (1999). A Preliminary Checklist of the moths of Butler County, Ohio. The Ohio Journal of Science, 99(4): 66-76
  • [69] Summerville K. S., Boulware M. J., Veech J. A., Crist T. O. (2002). Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America. Conservation Biology, 17(4): 1045-1057
  • [70] Summerville K. S., Crist T. O. (2003). Determinants of Lepidoptera community composition and species diversity in eastern deciduous forest: roles of season, eco region and patch size. Oikos, 100: 134-148
  • [71] Summerville K. S., Crist T. O. (2005). Temporal patterns of species accumulation in a survey of Lepidoptera in a beech-maple forest. Biodiversity and Conservation, 14: 3393-3406
  • [72] Taylor L. R., French R.A. (1974). Effects of light-trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research, 63: 583- 594
  • [73] Thomas A. W., Thomas G. M. (1994). Sampling strategies for estimating moth species diversity using a light trap in a northeastern softwood forest. Journal of The Lepidopterists’ Society, 48(2): 85-105
  • [74] Tikoca S., Hodge S., Tuiwawa M., Pene S., Clayton J., Brodie G. (2017). A comparison of macro-moth assemblages across three types of lowland forest in Fiji. The Journal of Research on the Lepidoptera, 49: 69-79
  • [75] Tikoca S., Hodge S., Tuiwawa M., Brodie G., Pene S., & Clayton J. (2016). An appraisal of sampling methods and effort for investigating moth assemblages in a Fijian forest. Austral Entomology, 55(4): 455-462
  • [76] Truxa C., Fielder K. (2012). Attraction to light - from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur. J. Entomol. 109: 77-84
  • [77] Usher B. M., Keiller S. W. J. (1998). The macrolepidoptera of farm woodlands: determinants of diversity and community structure. Biodiversity and Conservation, 7: 725-748
  • [78] White E.G. (1989). Light trapping frequency and data analysis – a reply. New Zealand Entomologist 12: 91-94
  • [79] Yang H.B., Hu G., Zhang G., Chen X., Zhu Z.R., Liu S., Liang Z.L., Zhang X.X., Cheng X.N., Zhai B.P. (2013). Effect of light colours and weather conditions on captures of Sogatella furcifera (Horwath) and Nilaparvata lugens (Stal). J. Appl. Entomol. 138: 743-753
  • [80] Yela J. L., Holyoak M. (1997). Effects of Moonlight and Meteorological Factors on Light and Bait Trap Catches of Noctuid Moths (Lepidoptera: Noctuidae). Environmental Entomology, 26(6): 1283-1290
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.