PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 146 | 202-214
Article title

The Effect on Mangrove Density with Sediment Transport Rate in Sikakap Coastal Area of Mentawai Island District, West Sumatera Province, Indonesia

Content
Title variants
Languages of publication
EN
Abstracts
EN
This study aims to determine what is the influence of the density of mangroves on the rate of coastal sediment transport and abrasion that occurred in the Sikakap Coastal area of Mentawai Island district. The research method used is the quadratic transect method and the sediment trap method. The type of mangrove vegetation that dominates in the Sikakap Coastal area of Mentawai Island district is Avicennia marina. Tree level mangrove density at Station I is 1,450 stands / ha and categorized as good, while the tree level mangrove density at Station II is 900 stands / ha and categorized as heavily damaged mangrove forests. The relationship between mangrove density and transport sediment rate in Sikakap Coastal, Mentawai Island district shows a negative correlation with the value -1, meaning that when mangrove density is high, the transport sediment rate will be low, and vice versa, when mangrove density is low, the transport sediment rate will be high.
Year
Volume
146
Pages
202-214
Physical description
Contributors
author
  • Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Indonesia
author
  • Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Indonesia
References
  • [1] Rogers, K.G., Goodbred, S., and Migration, H., 2014. The Sundarbans and Bengal Delta: The world’s largest tidal mangrove and delta system, in: Kale, V.S. (Ed.), Landscapes and Landforms of India. Springer, New York. doi:10.1007/978-94-017-8628-7
  • [2] Sheridan, P. and Hays, C., 2003. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23, 449–458.
  • [3] Rizal A. and Lantun P.D. Using economic values to evaluate management options for fish biodiversity in the Sikakap Strait, Indonesia. Biodiversitas Journal Vol 18 (2) (2017) 586-592
  • [4] Souza-Filho, P.W.M., Cohen, M.C.L., Lara, R.J., Lessa, G.C., Koch, B., and Behling, H. Holocene coastal evolution and facies model of the Bragança macrotidal flat on the Amazon mangrove coast, northern Brazil. J. Coast. Res. (2006) 306–310.
  • [5] Souza-Filho, P.W.M., Lessa, G.C., Cohen, M.C.L., Costa, F.R., and Lara, R.J., 2009. The subsiding macrotidal barrier estuarine system of the Eastern Amazon Coast, Northern Brazil, in: Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Lecture Notes in Earth Sciences. Springer, Berlin, Heidelberg, pp. 347–375. doi:10.1007/978-3-540-44771-9_11
  • [6] Spalding, M.D., Blasco, E., and Field, C.D., 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okiwana, Japan. doi:10.1017/S0266467498300528
  • [7] Speer, P.E., Aubrey, D.G., and Friedrichs, C.T., 1991. Nonlinear hydrodynamics of shallow tidal inlet/bay systems, in: Parker, B.B. (Ed.), Tidal Hydrodynamics. John Wiley & Sons, Inc., pp. 321–339.
  • [8] Rizal A. and Nurruhwati I. New Methodological Approaches for Change in Traditional Sectors: The Case of the West Java Fisheries Socio Economic System. World News of Natural Sciences 22 (2019) 41-51.
  • [9] Rizal A. Reformulation of Regional Development Strategy To Strengthen Marine Sector in West Java, Indonesia. World Scientific News, 107 (2018) 207-215.
  • [10] Rizal A. Science and policy in the coastal zone management. World News of Natural Sciences 21 (2018) 1-8
  • [11] Thampanya, U., Vermaat, J.E., Sinsakul, S., and Panapitukkul, N. Coastal erosion and mangrove progradation of Southern Thailand. Estuar. Coast. Shelf Sci. 68 (2006) 75–85. doi:10.1016/j.ecss.2006.01.011
  • [12] Thomson, R.E. and Emery, W.J., 2014. Data analysis methods in physical oceanography, 3rd ed. Elsevier B.V. doi:https://doi.org/10.1016/C2010-0-66362-0
  • [13] Thorne, C., Annandale, G., Jensen, J., and Jensen, E., 2011. Review of Sediment Transport, Morphology, and Nutrient Balance, Report to the Mekong River Commission Secretariat prepared as part of the Xayaburi MRCS Prior Consultation Project Review Report.
  • [14] Uncles, R.J., Bale, A.J., Brinsley, M.D., Frickers, P.E., Harris, C., Lewis, R.E., Pope, N.D., Staff, F.J., Stephens, J.A., Turley, C.M., and Widdows, J. Intertidal mudflat properties, currents and sediment erosion in the partially mixed Tamar Estuary, UK. Ocean Dyn. 53 (2003) 239–251.
  • [15] Van Maanen, B., Coco, G., and Bryan, K.R. Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments. Geomorphology 191 (2013) 23–34.
  • [16] Walsh, J.P. and Nittrouer, C.A. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Mar. Geol. 208 (2004) 225–248. doi:10.1016/j.margeo.2004.04.010
  • [17] Rizal A., Izza M.A., Heti H., and Lantun P. Distribution and Condition of Coral Reefs in the Waters of Biawak Island, Indramayu Regency, West Java, Indonesia. World Scientific News, 144 (2020) 141-157.
  • [18] Rizal A., Andriani Y., and Kusumartono F.X.H., A Strategic Environmental Assessment for Southern Coastal of West Java Province, Indonesia. World Scientific News, 137 (2019) 188-209.
  • [19] Rizal A., Nora A., Pringgo Kdyp, Rega P., and Aulia A. Molecular diversity of the bacterial community associated with Acropora digitifera (Dana, 1846) corals on Rancabuaya coastline, Garut District, Indonesia. World Scientific News, 144 (2020) 384-396.
  • [20] Warner, J.C., Schoellhamer, D., and Schladow, G. Tidal truncation and barotropic convergence in a channel network tidally driven from opposing entrances. Estuar. Coast. Shelf Sci. 56 (2003) 629–639.
  • [21] Wattayakorn, G., Wolanski, E., and Kjerfve, B. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand. Estuar. Coast. Shelf Sci. 31 (1990) 667–688. doi:10.1016/0272-7714(90)90019-N
  • [22] Wolanski, E., Jones, M., and Bunt, J.S. Hydrodynamics of a tidal creek-mangrove swamp system. Aust. J . Mar. Freshw. Res 31 (1980) 431–50.
  • [23] Rizal A., Nurruhwati I., and Khan A.M.A. Economic Contribution of Southern West Java Province Marine Fisheries. World Scientific News, 119 (2019) 204-217
  • [24] Wolanski, E., Mazda, Y., and Ridd, P., 1992. Mangrove Hydrodynamics, in: Tropical Mangrove Ecosystems. pp. 43–62. doi:10.1029/CE041p0043
  • [25] Woodroffe, C.D., 1985. Studies of a mangrove basin, Tuff Crater, New Zealand: II. Comparison of volumetric and velocity-area methods of estimating tidal flux. Estuar. Coast. Shelf Sci. 20, 431–445. doi:10.1016/0272-7714(85)90087-3
  • [26] Preston, B.L., Yuen, E.J., and Westaway, R.M.. Putting vulnerability to climate change on the map: A review of approaches, benefits, and risks. Sustainability Science, 6(2) (2001) 177–202.
  • [27] S. Wolfeand and D.B. Brooks.Water scarcity: an alternative view and its implications for policy and capacity building. Natural Resources Forum (27) (2003) 99–107.
  • [28] Rahmstorf, S. A new view of sea level rise. Nature Reports: Climate Change, 4 (2010) 44–45
  • [29] Machado, A.A.d.S., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., Becker, R., Görlich, A.S., and Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 53 (10) (2019) 6044-6052.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f6c96356-2aea-4335-866e-031c1c0a4ced
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.