Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

98-120

Physical description

Contributors

author

- Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA

References

- [1] Wilber K. (Ed.) Quantum questions. Mystical writings of the world’s greatest physicists. Boston: Shambhala, 2001, p.139.
- [2] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
- [3] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
- [4] Czajko J. On the Hafele-Keating experiment. Ann. Phys. (Leipzig) 47 (1990) 517-518
- [5] Czajko J. Complex Conjugate Time in Macro Experiments. Chaos Solit. Fract. 13 (2002) 17-23
- [6] Czajko J. Wave-particle duality of a 6D wavicle in two paired 4D dual reciprocal quasispaces of a heterogeneous 8D quasispatial structure. World Scientific News 127(1) (2019) 1-55
- [7] Czajko J. Experiments with flying atomic clocks. Exper. Tech. Phys. 39 (1991) 145-147
- [8] Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39
- [9] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(2) (2018) 171-197
- [10] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(2) (2018) 190-216
- [11] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
- [12] Chow T.L. Mathematical methods for physicists. A concise introduction. Cambridge: Cambridge Univ. Press, 2000, pp. 22, 218f.
- [13] Tai C.-T. Generalized vector and dyadic analysis. Applied mathematics in field theory. Piscataway, NJ: IEEE Press, 1997, pp. 65, 73ff.
- [14] Björk J.-E. Rings of differential operators. Amsterdam: North-Holland, 1979, p. 92ff.
- [15] Taylor A.E. & Mann W.R. Advanced calculus. New York: Wiley, 1983, p. 169.
- [16] Olmsted J.M.H. Advanced calculus. New York: Appleton-Century-Crofts, 1961, p. 272.
- [17] Kemmer N. Vector analysis. A physicist’s guide to the mathematics of fields in three dimensions. Cambridge: Cambridge Univ. Press, 1977, pp. 127, 167.
- [18] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30
- [19] Czajko J. Angular nonradial vs. usual radial potential energy quotient. Int. Lett. Chem. Phys. Astron. 52 (2015) 172-177
- [20] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54
- [21] Czajko J. Radial and nonradial effects of radial fields in Frenet frame. Appl. Phys. Res. 3(1) (2011) 2-7
- [22] Browne J. Grassmann algebra I: Foundations. Exploring extended vector algebra with Mathematica. Eltham, VIC, Australia: Barnard Publishing, 2012, pp. 7, 15, 13ff, 19, 39, 49ff, 93ff, 125ff, 161, 217.
- [23] Roman S. Advanced linear algebra. New York: Springer, 1992, p. 37.
- [24] Shafarevich I.R. & Remizov A.O. Linear algebra and geometry. Berlin: Springer, 2013, pp. 89, 123.
- [25] Sadun K. Applied linear algebra. The decoupling principle. Upper Saddle River, NJ: Prentice Hall, 2001, p. 17.
- [26] Solov D. The keys to linear algebra. New York, Wiley, 1990, p. 208f.
- [27] Moon P. & Spencer D.E. Field theory handbook including coordinate systems, differential equations and their solutions. Berlin: Springer, 1971, pp. 3, 136f.
- [28] Tai C.T. A survey of the improper uses of in vector analysis. Ann Arbor, MI: Univ. of Michigan Tech. Report RL 909, 1994.
- [29] Tai C.T. A historical study of vector analysis. Ann Arbor, MI: Univ. of Michigan Tech. Report RL 915, 1995.
- [30] Birman G.S. & Desideri G.M. Relationship between Laplacian operator and D'Alembertian operator. Divulgaciones Matemáticas 12(1) (2004) 35-52
- [31] Narlikar J.V. Biscalar and Bivector Green's Functions in de Sitter Space Time. PNAS USA 65(3) (1970) 483-490
- [32] Voss K.K., Wilschut H.W. & Timmermans R.G.E. Symmetry violations in nuclear and neutron β decay. Rev. Mod. Phys. 87(4) Oct-Dec 2015 1483-1516 – see p. 1506f.
- [33] Grossman I. & Magnus W. Groups and their graphs. New York: Random House, 1964, p. 89.
- [34] Boas M.L. Mathematical methods for the physical sciences. New Delhi: Wiley, 2017, p. 525ff.
- [35] Kaplan W. Advanced calculus. Reading, MA: Addison-Wesley, 1984, p.185.
- [36] Mandelbaum R.F. Groundbreaking observation confirms an important prediction of quantum physics. (2017) [search for the article on Gizmodo].
- [37] Crowe M.J. A history of vector analysis. The evolution of the idea of a vectorial system. Notre Dame: Univ. of Notre Dame, 1967, p. 186f.
- [38] Dunning-Davies J. Mathematical methods for mathematicians, physical scientists and engineers. Chichester: Ellis Horwood, 1982, pp.182, 391, 392.
- [39] Chisholm J.S.R. & Morris R.M. Mathematical methods in physics. Philadelphia: W.B. Saunders, 1965, p. 313f.
- [40] Hardy A.S. Elements of quaternions. Boston, 1881, p. 61.
- [41] Conway J.H. & Smith D.A. On quaternions and octonions: Their geometry, arithmetic, and symmetry. Wellesley, MA: A.K. Peters, 2003, p.12.
- [42] Wrede R.C. Introduction to vector and tensor analysis. New York: Dover, 1982, p. 3.
- [43] Darboux G. Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Paris : Gauthier-Villars, 1941, p. 458.
- [44] Hardy A.S. Elements of quaternions. Boston: 1881, pp. 32, 57f, 59, 61.
- [45] Marie M. Histoire des sciences mathématiques et physiques: XI. Paris: 1887, p. 217.
- [46] Rutledge W.A. Quaternions and Hadamard matrices. Proc. Am. Math. Soc. 3 (1952) 625.
- [47] Latimer C.G. Quaternion algebras. Duke Math. J. 15 (1948) 357.
- [48] Rédei L. Algebra. I. Oxford, Pergamon Press, 1967, p. 298.
- [49] Oproiu V. Pontrjagin forms of quaternion manifolds. Atti Ac. Lincei Rend. 76 (1984) 19
- [50] De Wit B. & Van Proeyen A. Hidden symmetries, special geometry and quaternionic manifold. Int. J. Mod. Phys. 3 1(9940 31-47
- [51] Pettofrezzo A.J. Vectors and their applications. Englewood Cliffs, NJ: Prentice-Hall, 1966, p. 70.
- [52] MacFarlane A. Vector analysis and quaternions. New York: Wiley, 1906, p. 16.
- [53] Jaeger J.C. An introduction to applied mathematics. Oxford: At The Clarendon Press, 1951, p. 162.
- [54] Murnaghan F.D. Introduction to applied mathematics. New York: Wiley, 1948, p. 91.
- [55] Bracken P. Geometry of partial differential equations. Geometry and differential equations. Saarbrücken: Lambert Academic Publishing, 2012, p. 32ff.
- [56] Friedman B. Principles and techniques of applied mathematics. New York: Wiley, 1956, pp. 134f, 138f.
- [57] Friedman B. Lectures on applications-oriented mathematics. San Francisco: Holden-Day, 1969, p. 17ff.
- [58] Logan J.D. Applied mathematics. Hoboken, NJ: Wiley-Interscience, 2006, p. 163ff.
- [59] Kolmogorov A.N. & Fomin S.V. Elements of the theory of functions and functional functional analysis. Mansfield Centre, CT: Martino Publishing, 2012. [Two volumes bound in one: Volume I: Metric and normed spaces. Volume II: Measure the Lebesgue integral, Hilbert space], pp. I:77, II:77.
- [60] Spivak M. A comprehensive introduction to differential geometry II. Houston: Publish or Perish, 1999, pp. 213f, 229ff, 325f.
- [61] Sternberg S. Lectures on differential geometry. Englewood Cliffs, NJ: Prentice-Hall, 1964, pp. 89ff, 94.
- [62] Isham C.J. Modern differential geometry for physicists. Singapore: World Scientific, 2003, p. 98, 269.
- [63] Burke W.L. Applied differential geometry. Cambridge: Cambridge Univ. Press, 1987, pp. 164f, 268f.
- [64] Bell S.R. The Cauchy transform, potential theory, and conformal mapping. Boca Raton, FL: CRC Press, 1992, p. 117ff.
- [65] Weisstein E.W. Divergence. MathWorld.
- [66] Mikhlin S.G. Constants in some inequalities of analysis. Chichester: Wiley, 1986, p. 11.
- [67] ] Hu P.-C. & Yang C.-C. Differentiable and complex dynamics of several variables. Dordrecht: Kluwer, 1999, p. 303ff.
- [68] Everitt W.N. & Markus L. Infinite dimensional complex symplectic spaces. Providence, RI: AMS, 2004, p. 3ff.
- [69] Tao T. Analysis II. New Delhi: Hindustan Book Agency, 2017, p. 127ff.
- [70] Li C. & Wiggins S. Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations. New York: Springer, 1987, p. 17.
- [71] Czajko J. On the Intrinsic Gravitational Repulsion. Chaos Solit. Fract. 19 (2004) 683-700
- [72] Czajko J. Equalized mass can explain the dark energy or missing mass problem as higher density of matter in stars amplifies their attraction. World Scientific News 80 (2017) 207-238
- [73] Czajko J. With Equalized Mass, its Density of Matter can Affect Radial Gravitational Interactions Too. Int. Lett. Chem. Phys. Astron. 54 (2015) 112-121
- [74] Czajko J. On the Universe’s Missing Mass. Chaos Solit. Fract. 23 (2005) 11-22
- [75] Hormander L. & Eckmann B. Linear partial differential operators. New York: Academic Press, 1963, [Note: the first author’s name should read: Hörmander], p. 156ff.
- [76] Artin E. Geometric algebra. Mineola, NY: Dover, 2016, p. 16ff.
- [77] Geller D. Analytic pseudodifferential operators for the Heisenberg group and local solvability. Princeton, NJ: Princeton Univ. Press, 1990, pp. 43f, 156, 202.
- [78] O’Neil P.V. Advanced engineering mathematics. Pacific Grove, CA: Thompson, 2003, p. 515, 518ff, 524.
- [79] Czajko J. On unconventional division by zero. World Scientific News 99 (2018) 133-147
- [80] Norton R.E. Complex variables for scientists and engineers. An introduction. New York: Oxford Univ. Press, 2010, p. 294f.
- [81] Riley K.F., Hobson M.P. & Bence S.J. Mathematical methods for physics and engineering. Cambridge: Cambridge Univ. Press, 2008, pp. 366f.
- [82] Czajko J. On Conjugate Complex Time I: Complex Time Implies Existence of Tangential Potential that Can Cause Some Equipotential Effects of Gravity. Chaos Solit. Fract. 11 (2000) 1983-1992
- [83] Penrose R. The road to reality. A complete guide to the laws of the universe. New York: Alfred A. Knopf, 2005, p. 318.
- [84] Brouwer L.E.J. Intuitionism and formalism. [pp. 123-138 in: Brouwer L.E.J. Collected works I. Amsterdam: North-Holland, 1975, see p. 125].
- [85] Kolmogoroff A. Zur Deutung der intuitionistischen Logik. Math. Z. 35 (1932) 58-65.
- [86] Karpunin V.A. The formal and the intuitive in mathematical knowledge. Leningrad, 1983, p. 84 [in Russian].

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f6b1338d-8290-4e0a-919f-00e4ca6d2efc