PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 132 | 98-120
Article title

Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Extending differential operators during transition from 3D operations to prospective 4D operations imply the need to expand their 4D range far beyond the usual set-theoretical universe from which subsets of the domain are composed. The prospective infrastructural expansion related to the attempted extending of operations virtually requires an extra dual reciprocal space and thus implies presence of a certain multispatial structure of both the mathematical- and the corresponding to it physical reality. At this point the implication is only operational for it is deduced from the attempted extension of operational domain/scope of geometric differential operator, which, in turn, demands an expansion of their range. The necessary presence of an extra space is not being postulated but emerges from comparative evaluations of differential operators. The operational necessity of presence of paired dual reciprocal spaces or quasispatial structures also generalizes contravariance for multispatiality.
Discipline
Year
Volume
132
Pages
98-120
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
References
  • [1] Wilber K. (Ed.) Quantum questions. Mystical writings of the world’s greatest physicists. Boston: Shambhala, 2001, p.139.
  • [2] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
  • [3] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
  • [4] Czajko J. On the Hafele-Keating experiment. Ann. Phys. (Leipzig) 47 (1990) 517-518
  • [5] Czajko J. Complex Conjugate Time in Macro Experiments. Chaos Solit. Fract. 13 (2002) 17-23
  • [6] Czajko J. Wave-particle duality of a 6D wavicle in two paired 4D dual reciprocal quasispaces of a heterogeneous 8D quasispatial structure. World Scientific News 127(1) (2019) 1-55
  • [7] Czajko J. Experiments with flying atomic clocks. Exper. Tech. Phys. 39 (1991) 145-147
  • [8] Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39
  • [9] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(2) (2018) 171-197
  • [10] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(2) (2018) 190-216
  • [11] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
  • [12] Chow T.L. Mathematical methods for physicists. A concise introduction. Cambridge: Cambridge Univ. Press, 2000, pp. 22, 218f.
  • [13] Tai C.-T. Generalized vector and dyadic analysis. Applied mathematics in field theory. Piscataway, NJ: IEEE Press, 1997, pp. 65, 73ff.
  • [14] Björk J.-E. Rings of differential operators. Amsterdam: North-Holland, 1979, p. 92ff.
  • [15] Taylor A.E. & Mann W.R. Advanced calculus. New York: Wiley, 1983, p. 169.
  • [16] Olmsted J.M.H. Advanced calculus. New York: Appleton-Century-Crofts, 1961, p. 272.
  • [17] Kemmer N. Vector analysis. A physicist’s guide to the mathematics of fields in three dimensions. Cambridge: Cambridge Univ. Press, 1977, pp. 127, 167.
  • [18] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30
  • [19] Czajko J. Angular nonradial vs. usual radial potential energy quotient. Int. Lett. Chem. Phys. Astron. 52 (2015) 172-177
  • [20] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54
  • [21] Czajko J. Radial and nonradial effects of radial fields in Frenet frame. Appl. Phys. Res. 3(1) (2011) 2-7
  • [22] Browne J. Grassmann algebra I: Foundations. Exploring extended vector algebra with Mathematica. Eltham, VIC, Australia: Barnard Publishing, 2012, pp. 7, 15, 13ff, 19, 39, 49ff, 93ff, 125ff, 161, 217.
  • [23] Roman S. Advanced linear algebra. New York: Springer, 1992, p. 37.
  • [24] Shafarevich I.R. & Remizov A.O. Linear algebra and geometry. Berlin: Springer, 2013, pp. 89, 123.
  • [25] Sadun K. Applied linear algebra. The decoupling principle. Upper Saddle River, NJ: Prentice Hall, 2001, p. 17.
  • [26] Solov D. The keys to linear algebra. New York, Wiley, 1990, p. 208f.
  • [27] Moon P. & Spencer D.E. Field theory handbook including coordinate systems, differential equations and their solutions. Berlin: Springer, 1971, pp. 3, 136f.
  • [28] Tai C.T. A survey of the improper uses of  in vector analysis. Ann Arbor, MI: Univ. of Michigan Tech. Report RL 909, 1994.
  • [29] Tai C.T. A historical study of vector analysis. Ann Arbor, MI: Univ. of Michigan Tech. Report RL 915, 1995.
  • [30] Birman G.S. & Desideri G.M. Relationship between Laplacian operator and D'Alembertian operator. Divulgaciones Matemáticas 12(1) (2004) 35-52
  • [31] Narlikar J.V. Biscalar and Bivector Green's Functions in de Sitter Space Time. PNAS USA 65(3) (1970) 483-490
  • [32] Voss K.K., Wilschut H.W. & Timmermans R.G.E. Symmetry violations in nuclear and neutron β decay. Rev. Mod. Phys. 87(4) Oct-Dec 2015 1483-1516 – see p. 1506f.
  • [33] Grossman I. & Magnus W. Groups and their graphs. New York: Random House, 1964, p. 89.
  • [34] Boas M.L. Mathematical methods for the physical sciences. New Delhi: Wiley, 2017, p. 525ff.
  • [35] Kaplan W. Advanced calculus. Reading, MA: Addison-Wesley, 1984, p.185.
  • [36] Mandelbaum R.F. Groundbreaking observation confirms an important prediction of quantum physics. (2017) [search for the article on Gizmodo].
  • [37] Crowe M.J. A history of vector analysis. The evolution of the idea of a vectorial system. Notre Dame: Univ. of Notre Dame, 1967, p. 186f.
  • [38] Dunning-Davies J. Mathematical methods for mathematicians, physical scientists and engineers. Chichester: Ellis Horwood, 1982, pp.182, 391, 392.
  • [39] Chisholm J.S.R. & Morris R.M. Mathematical methods in physics. Philadelphia: W.B. Saunders, 1965, p. 313f.
  • [40] Hardy A.S. Elements of quaternions. Boston, 1881, p. 61.
  • [41] Conway J.H. & Smith D.A. On quaternions and octonions: Their geometry, arithmetic, and symmetry. Wellesley, MA: A.K. Peters, 2003, p.12.
  • [42] Wrede R.C. Introduction to vector and tensor analysis. New York: Dover, 1982, p. 3.
  • [43] Darboux G. Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Paris : Gauthier-Villars, 1941, p. 458.
  • [44] Hardy A.S. Elements of quaternions. Boston: 1881, pp. 32, 57f, 59, 61.
  • [45] Marie M. Histoire des sciences mathématiques et physiques: XI. Paris: 1887, p. 217.
  • [46] Rutledge W.A. Quaternions and Hadamard matrices. Proc. Am. Math. Soc. 3 (1952) 625.
  • [47] Latimer C.G. Quaternion algebras. Duke Math. J. 15 (1948) 357.
  • [48] Rédei L. Algebra. I. Oxford, Pergamon Press, 1967, p. 298.
  • [49] Oproiu V. Pontrjagin forms of quaternion manifolds. Atti Ac. Lincei Rend. 76 (1984) 19
  • [50] De Wit B. & Van Proeyen A. Hidden symmetries, special geometry and quaternionic manifold. Int. J. Mod. Phys. 3 1(9940 31-47
  • [51] Pettofrezzo A.J. Vectors and their applications. Englewood Cliffs, NJ: Prentice-Hall, 1966, p. 70.
  • [52] MacFarlane A. Vector analysis and quaternions. New York: Wiley, 1906, p. 16.
  • [53] Jaeger J.C. An introduction to applied mathematics. Oxford: At The Clarendon Press, 1951, p. 162.
  • [54] Murnaghan F.D. Introduction to applied mathematics. New York: Wiley, 1948, p. 91.
  • [55] Bracken P. Geometry of partial differential equations. Geometry and differential equations. Saarbrücken: Lambert Academic Publishing, 2012, p. 32ff.
  • [56] Friedman B. Principles and techniques of applied mathematics. New York: Wiley, 1956, pp. 134f, 138f.
  • [57] Friedman B. Lectures on applications-oriented mathematics. San Francisco: Holden-Day, 1969, p. 17ff.
  • [58] Logan J.D. Applied mathematics. Hoboken, NJ: Wiley-Interscience, 2006, p. 163ff.
  • [59] Kolmogorov A.N. & Fomin S.V. Elements of the theory of functions and functional functional analysis. Mansfield Centre, CT: Martino Publishing, 2012. [Two volumes bound in one: Volume I: Metric and normed spaces. Volume II: Measure the Lebesgue integral, Hilbert space], pp. I:77, II:77.
  • [60] Spivak M. A comprehensive introduction to differential geometry II. Houston: Publish or Perish, 1999, pp. 213f, 229ff, 325f.
  • [61] Sternberg S. Lectures on differential geometry. Englewood Cliffs, NJ: Prentice-Hall, 1964, pp. 89ff, 94.
  • [62] Isham C.J. Modern differential geometry for physicists. Singapore: World Scientific, 2003, p. 98, 269.
  • [63] Burke W.L. Applied differential geometry. Cambridge: Cambridge Univ. Press, 1987, pp. 164f, 268f.
  • [64] Bell S.R. The Cauchy transform, potential theory, and conformal mapping. Boca Raton, FL: CRC Press, 1992, p. 117ff.
  • [65] Weisstein E.W. Divergence. MathWorld.
  • [66] Mikhlin S.G. Constants in some inequalities of analysis. Chichester: Wiley, 1986, p. 11.
  • [67] ] Hu P.-C. & Yang C.-C. Differentiable and complex dynamics of several variables. Dordrecht: Kluwer, 1999, p. 303ff.
  • [68] Everitt W.N. & Markus L. Infinite dimensional complex symplectic spaces. Providence, RI: AMS, 2004, p. 3ff.
  • [69] Tao T. Analysis II. New Delhi: Hindustan Book Agency, 2017, p. 127ff.
  • [70] Li C. & Wiggins S. Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations. New York: Springer, 1987, p. 17.
  • [71] Czajko J. On the Intrinsic Gravitational Repulsion. Chaos Solit. Fract. 19 (2004) 683-700
  • [72] Czajko J. Equalized mass can explain the dark energy or missing mass problem as higher density of matter in stars amplifies their attraction. World Scientific News 80 (2017) 207-238
  • [73] Czajko J. With Equalized Mass, its Density of Matter can Affect Radial Gravitational Interactions Too. Int. Lett. Chem. Phys. Astron. 54 (2015) 112-121
  • [74] Czajko J. On the Universe’s Missing Mass. Chaos Solit. Fract. 23 (2005) 11-22
  • [75] Hormander L. & Eckmann B. Linear partial differential operators. New York: Academic Press, 1963, [Note: the first author’s name should read: Hörmander], p. 156ff.
  • [76] Artin E. Geometric algebra. Mineola, NY: Dover, 2016, p. 16ff.
  • [77] Geller D. Analytic pseudodifferential operators for the Heisenberg group and local solvability. Princeton, NJ: Princeton Univ. Press, 1990, pp. 43f, 156, 202.
  • [78] O’Neil P.V. Advanced engineering mathematics. Pacific Grove, CA: Thompson, 2003, p. 515, 518ff, 524.
  • [79] Czajko J. On unconventional division by zero. World Scientific News 99 (2018) 133-147
  • [80] Norton R.E. Complex variables for scientists and engineers. An introduction. New York: Oxford Univ. Press, 2010, p. 294f.
  • [81] Riley K.F., Hobson M.P. & Bence S.J. Mathematical methods for physics and engineering. Cambridge: Cambridge Univ. Press, 2008, pp. 366f.
  • [82] Czajko J. On Conjugate Complex Time I: Complex Time Implies Existence of Tangential Potential that Can Cause Some Equipotential Effects of Gravity. Chaos Solit. Fract. 11 (2000) 1983-1992
  • [83] Penrose R. The road to reality. A complete guide to the laws of the universe. New York: Alfred A. Knopf, 2005, p. 318.
  • [84] Brouwer L.E.J. Intuitionism and formalism. [pp. 123-138 in: Brouwer L.E.J. Collected works I. Amsterdam: North-Holland, 1975, see p. 125].
  • [85] Kolmogoroff A. Zur Deutung der intuitionistischen Logik. Math. Z. 35 (1932) 58-65.
  • [86] Karpunin V.A. The formal and the intuitive in mathematical knowledge. Leningrad, 1983, p. 84 [in Russian].
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f6b1338d-8290-4e0a-919f-00e4ca6d2efc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.