PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 149 | 110-127
Article title

Effects of Internal Heat Generation on the Thermal Stability of a Porous Fin

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, the effects of internal heat generation on thermal stability of porous fin is theoretical investigated using differential transform method. The parametric studies reveal increase in the internal heat generation leads to increase in the value or the range of the thermal stability of the fin. The internal heat generation can be used to control the thermal instability in the fin. Also, as the porosity parameter increase, the rate of heat transfer from the base of the fin and consequently improve the efficiency of the fin increase. However, a high value or an excessive internal heat generation results in an undesirable situation where some of the heat energy cannot escape to the sink and instead ends up flowing into the prime surface and the fin tends to store heat rather than dissipating it. This scenario defeats the prime purpose of the cooling fin. Therefore, the operational parameters must be carefully selected to ensure that the fin retains its primary purpose of removing heat from the primary surface.
Discipline
Year
Volume
149
Pages
110-127
Physical description
Contributors
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • Department of Works and Physical Planning, University of Lagos, Akoka, Lagos State, Nigeria
author
  • Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta, Nigeria
References
  • [1] S. Kiwan, A. Al-Nimr. Using Porous Fins for Heat Transfer Enhancement. ASME J. Heat Transfer 123 (2001) 790-795
  • [2] S. Kiwan, Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46 (2007a) 1046-1055
  • [3] S. Kiwan. Thermal analysis of natural convection porous fins. Tran. Porous Media 67 (2007b) 17-29.
  • [4] S. Kiwan, O. Zeitoun, Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow 18 (5) (2008) 618-634.
  • [5] R. S. Gorla, A. Y. Bakier. Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer 38 (2011) 638-645.
  • [6] B. Kundu and D. Bhanji. An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrigeration 34 (2011) 337-352.
  • [7] B. Kundu, D. Bhanja, K. S. Lee. A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer 55 (25-26) (2012) 7611-7622.
  • [8] A. Taklifi, C. Aghanajafi, H. Akrami. The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med. 85 (2010) 215-231.
  • [9] D. Bhanja, B. Kundu. Thermal analysis of a constructal T-shaped porous fin with radiation effects. Int J Refrigerat 34 (2011) 1483-1496.
  • [10] B. Kundu, Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transfer 50 (2007) 1545-1558
  • [11] S. Saedodin, S. Sadeghi, S. Temperature distribution in long porous fins in natural convection condition. Middle-east J. Sci. Res. 13 (6) (2013) 812-817.
  • [12] S. Saedodin, M. Olank, 2011. Temperature Distribution in Porous Fins in Natural Convection Condition. Journal of American Science 7(6) (2011) 476-481
  • [13] M. T. Darvishi, R. Gorla, R.S., Khani, F., Aziz, A.-E. Thermal performance of a porus radial fin with natural convection and radiative heat losses. Thermal Science, 19(2) (2015) 669-678
  • [14] M. Hatami, D. D. Ganji. Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76 (2013) 185-193.
  • [15] M. Hatami, D. D. Ganji. Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). International of J. Ceramics International, 40 (2014) 6765-6775.
  • [16] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energ. Convers. Manage. 74 (2013) 9-16.
  • [17] M. Hatami, D. D. Ganji. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of Refrigeration, 40 (2014) 140-151.
  • [18] M. Hatami, G. H. R. M. Ahangar, D. D. Ganji, K. Boubaker. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84 (2014) 533−540.
  • [19] R. Gorla, R.S., Darvishi, M. T. Khani, F. Effects of variable Thermal conductivity on natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer 38 (2013) 638-645.
  • [20] A. Moradi, T. Hayat, and A. Alsaedi. Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management 77 (2014) 70-77
  • [21] S. Saedodin. M. ShahbabaeiThermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM). Arab J Sci Eng 38 (2013) 2227-2231.
  • [22] H. Ha, Ganji D. D and Abbasi M. Determination of Temperature Distribution for Porous Fin with Temperature-Dependent Heat Generation by Homotopy Analysis Method. J Appl Mech Eng. 4(1) (2005).
  • [23] H. A. Hoshyar, I. Rahimipetroudi, D. D. Ganji, A. R. Majidian. Thermal performance of porous fins with temperature-dependent heat generation via Homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics 14(4) (2015), 53-65.
  • [24] Y. Rostamiyan, D. D. Ganji, I. R. Petroudi, and M. K. Nejad. Analytical Investigation of Nonlinear Model Arising in Heat Transfer Through the Porous Fin. Thermal Science. 18(2) (2014) 409-417.
  • [25] S. E. Ghasemi, P. Valipour, M. Hatami, D. D. Ganji. Heat transfer study on solid and porous convective fins with temperature-dependent heat -generation using efficient analytical method. J. Cent. South Univ. 21 (2014) 4592-4598.
  • [26] I. R. Petroudi, D. D. Ganji, A. B. Shotorban, M. K. Nejad, E. Rahimi, R. Rohollahtabar and F. Taherinia. Semi-Analytical Method for Solving Nonlinear Equation Arising in Natural Convection Porous fin. Thermal Science, 16(5) (2012) 1303-1308
  • [27] M.G. Sobamowo, O.M. Kamiyo, O.A. Adeleye. Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress 1 (2017) 39-52
  • [28] M.G. Sobamowo. Singular perturbation and differential transform methods to two-dimensional flow of nanofluid in a porous channel with expanding/contracting walls subjected to a uniform transverse magnetic field. Thermal Science and Engineering Progress 4 (2017) 71-84
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f69f2a80-760b-4328-a86a-c75de44028e4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.