Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 5 | 3 | 165-176

Article title

Miejsce angiografii fluoresceinowej wśród współczesnych badań obrazowych w okulistyce – część II

Authors

Content

Title variants

EN
The position of fluorescein angiography among modern imaging techniques in ophthalmology – part II

Languages of publication

PL

Abstracts

PL
Angiografia fluoresceinowa siatkówki jest jednym z najstarszych badań obrazowych w okulistyce. Wraz z wprowadzeniem optycznej koherentnej tomografii do codziennej praktyki klinicznej zmieniły się również wskazania do wykonywania angiografii fluoresceinowej. W prezentowanej pracy omówiono współczesne zastosowania angiografii fluoresceinowej w diagnostyce schorzeń siatkówki oraz wymieniono główne wskazania do jej wykonania. Badanie to porównywane jest z optyczną koherentną tomografią oraz angiografią OCT. Autor wskazuje również główne kierunki rozwoju techniki angiograficznej.
EN
Fluorescein angiography is one of the oldest forms of imaging in ophthalmology. However, with the advent of optical coherence tomography in everyday clinical practice, indications for performing fluorescein angiography have significantly changed. In the following paper, modern application of fluorescein angiography in diagnostics of retinal diseases has been outlined as well as main recommendations for its performance. It has been compared with optical coherence tomography and OCT angiography. Author presents main directions for development of this technique.

Discipline

Publisher

Journal

Year

Volume

5

Issue

3

Pages

165-176

Physical description

Contributors

  • Poradnia Okulistyczna Dobry Wzrok w Gdańsku

References

  • 1. Hammerstein W, Leide E. The importance of fluorescein angiography in the diagnosis of Stargardt’s macular degeneration. Klin Monbl Augenheilkd 1981; 178(1): 20-23.
  • 2. Bottoni F, Fatigati G, Carlevaro G, et al. Fundus flavimaculatus and subretinal neovascularization. Graefes Arch Clin Exp Ophthalmol 1992; 230(5): 498-500.
  • 3. Battaglia Parodi M, Da Pozzo S, Ravalico G. Photodynamic therapy for choroidal neovascularization associated with pattern dystrophy. Retina 2003; 23(2): 171-176.
  • 4. Quijano C, Querques G, Massamba N, et al. Type 3 choroidal neovascularization associated with fundus flavimaculatus. Ophthalmic Res 2009; 42(3): 152-154.
  • 5. Gass JDM. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. 3rd ed. CV Mosby, St. Louis 1987: 46-59.
  • 6. Daurich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res 2015; 48: 82-118.
  • 7. Konstantinidis L, Mantel I, Zografos L, et al. Intravitreal ranibizumab in the treatment of choroidal neovascularization associated with idiopathic central serous chorioretinopathy. Eur J Ophthalmol 2010; 20(5): 955-958.
  • 8. Bonini Filho MA, de Carlo TE, Ferrara D, et al. Association of Choroidal Neovascularization and Central Serous Chorioretinopathy With Optical Coherence Tomography Angiography. JAMA Ophthalmol 2015; 133(8): 899-906.
  • 9. Royal College of Ophthalmologists. Retinal Vein Occlussion Guidelines 2015 [online: www.rcopht.ac.uk].
  • 10. Shilling JS, Kohner EM. New vessel formation in retinal branch vein occlusion. Br J Ophthalmol 1976; 60: 810-815.
  • 11. Yannuzzi LA, Bardal AM, Freund KB, et al. Idiopathic macular telangiectasia. Arch Ophthalmol 2006; 124(4): 450-460.
  • 12. Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis. Update of classification and follow-up study. Ophthalmology 1993; 100: 1536-1546.
  • 13. Spaide RF, Klancnik JM Jr, Cooney MJ, et al. Volume-Rendering Optical Coherence Tomography Angiography of Macular Telangiectasia Type 2. Ophthalmology 2015; 122(11): 2261-2269.
  • 14. Launbjerg K, Bache I, Galanakis M, et al. von Hippel-Lindau development in children and adolescents. Am J Med Genet A 2017; 173(9): 2381-2394.
  • 15. Early diagnosis of choroidal melanoma. Br J Ophthalmol 1980; 64(3): 146-147.
  • 16. Tarkkanen A, Laatikainen L. Fluorescein angiography in the long-term follow-up of choroidal melanoma after conservative treatment. Acta Ophthalmol (Copenh) 1985; 63(1): 73-79.
  • 17. Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy. Clin Ophthalmol 2015; 9: 527-531.
  • 18. Silva PS, Horton MB, Clary D, et al. Identification of Diabetic Retinopathy and Ungradable Image Rate with Ultrawide Field Imaging in a National Teleophthalmology Program. Ophthalmology 2016; 123(6): 1360-1367.
  • 19. Ghasemi Falavarjani K, Wang K, Khadamy J, et al. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curr Ophthalmol 2016; 28(2): 57-60.
  • 20. Silva PS, Cavallerano JD, Haddad NM, et al. Peripheral Lesions Identified on Ultrawide Field Imaging Predict Increased Risk of Diabetic Retinopathy Progression over 4 Years. Ophthalmology 2015; 122(5): 949-956.
  • 21. Wessel MM, Nair N, Aaker GD, et al. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br J Ophthalmol 2012; 96(5): 694-698.
  • 22. Talks SJ, Manjunath V, Steel DH, et al. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol 2015; 99(12): 1606-1609.
  • 23. Soliman AZ, Silva PS, Aiello LP, et al. Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy. Semin Ophthalmol 2012; 27(5-6): 221-227.
  • 24. Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age- -related macular degeneration Ophthalmology. 2014; 121: 1435-1444.
  • 25. Al-Sheikh M, Tepelus TC, Nazikyan T, et al. Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 449-452.
  • 26. Hwang TS, Gao SS, Liu L, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol 2016; 134: 367-373.
  • 27. Zhang M, Hwang TS, Dongye C, et al. Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci 2016; 57: 5101-5106.
  • 28. Liu L, Gao SS, Bailey ST, et al. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed Opt Express 2015; 6: 3564-3576.
  • 29. Huang D, Jia Y, Rispoli M, et al. Optical coherence tomography angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment. Retina 2015; 35: 2260-2264.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f688fd6f-e416-4789-a043-af5e4d1667db
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.