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ABSTRACT 

In this paper, we proposed an ordinary differential equation model for the transmission of 

Hepatitis B virus (BHV). The model accounted for the susceptible, exposed, infected, Chronic, and 

removed classes. We obtained the model's disease-free and endemic equilibrium points and the effective 

reproductive number. Further, from a thorough sensitivity analysis of the effective reproductive number, 

we extended the model by incorporating five time-dependent controls to cater to the vertical 

transmission, vaccination, testing, and treatment of acutely and chronically infected individuals. 

Numerical simulation was conducted to underscore the effects of the control in combating HBV. 
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1.  INTRODUCTION 

 

Hepatitis B virus (HBV) is a DNA virus of the Hepadnaviridea family recognized 

globally as a significant disease of public health importance. It has been estimated that up to 2 
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billion individuals have evidence of exposure, and 248 million persons are chronically infected. 

(Kiire, 1993). Epidemiologically, approximately 15–40% of chronically infected patients 

develop serious complications such as cirrhosis, liver failure, and hepatocellular carcinoma 

(HCC). Nearly 1 million people die annually as a result of these complications. (Nicolini et al., 

2019). Most infected individuals are of eastern Asian or sub-Saharan African origin. Sub-

Saharan Africa is considered to be a region of high endemicity with an average carrier rate of 

10–20% in the general population and with 70–95% having at least a marker of previous 

infection (Emechebe et al., 2009; Schweitzer et al., 2015)   

Several mathematical models have been proposed by researchers to understand the 

dynamics of HBV. Others have also used mathematical models to evaluate how control 

strategies have fared in combating HBV. These models are in the form of an ordinary 

differential equation, fractional order differential equation, stochastic differential equations, 

and integro-differential equations.  

(Khatun & Biswas, 2020) presented a compartmental model of chronic disease liver 

cirrhosis describing the transmission dynamics of Hepatitis B. Their research aimed to 

minimize infected and liver cirrhotic individuals by applying two optimal control strategies of 

vaccination and treatment. Analytical and numerical analysis of their model shows that the two 

strategies can successfully combat the Hepatitis B virus. (Aniji et al., 2020) developed and 

analyzed a model to understand the effect of antiviral therapy using LHAM, which describes 

the possible relation to HBV and target liver cells. The paper analyzed how the number of 

infected cells largely gets reduced and how liver damage can be controlled. (Alrabaiah et al., 

2020) presented the analysis of the Hepatitis B virus through a new mathematical model in the 

presence of treatment and vaccinations.  

They extended the model to an optimal control problem of three control variables. 

Considering different control combinations, we introduce four different strategies to minimize 

the spread of Hepatitis B infection in the population. Finally, to illustrate the effectiveness of 

each strategy for the eradication of the disease, They perform and discuss the numerical 

simulations in detail. (Means et al., 2020) studied the role of spatial effects in mathematical 

models for the Hepatitis b virus. They summarised that animal models and in vitro experiments 

for HBV do not provide the level of delicate control over such spatial aspects provided by 

mathematical models. Construction of such a detailed, critical, tractable model may prove 

instrumental in detailing precisely why nearly 300 million people are persistently infected with 

HBV. 

In (Volinsky et al., 2021) the authors present an analysis of a hepatitis B virus (HBV) 

model, including cytotoxic T lymphocytes (CTL) and antibody responses, under distributed 

feedback control, expressed as an integral form to predict the effect of a combination treatment 

with interleukin-2 (IL-2). They used Cauchy matrices to analyze the stability of the 

corresponding integrodifferential systems. (Side et al., 2021) built a Susceptible-Exposed-

Infected-Recovered-Infected (SEIRI) model for HBV using the mathematical Graph method. 

(Zada et al., 2021) extended a constant control model to a suitable optimal control problem to 

reduce the number of humans that are infected with the Hepatitis B virus and the costs 

associated with the controls.  

The results of the numerical simulations of the extended model show that the optimal 

combination of education campaign (awareness), treatment, and vaccination is the most 

efficient way to control the hepatitis B virus (HBV) infection. (Din et al., 2021) proposed 

various stages of the hepatitis B virus (HBV) besides its transmissibility and nonlinear 
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incidence rate to develop an epidemic model. Using sensitivity analysis, the authors formulate 

a control problem to eradicate HBV from the population and prove that the control problem 

exists. The optimum system's complete characterization was achieved using the 4th-order 

Runge-Kutta procedure. 

(Volinsky, 2022) classified the equilibrium points of an HBV mathematical model with 

combined therapy. The influence of right-hand side changes on solution behaviours is 

estimated, and regulation with delays in upper- and lower-bound integral limits that presents a 

period with IL-2 support therapy are researched. (Din & Abidin, 2022) constructed a system of 

equations for Hepatitis B disease in the sense of Atanganaa– Baleanu Caputo (ABC) fractional 

order derivative. They used some well-known results of fixed point theory to find the Ulam–

Hyers type stability. Further, they apply well-known transform due to Laplace and 

decomposition techniques (LADM) and Adomian polynomial for nonlinear terms to compute 

the proposed model's series solution. Graphical results show that LADM is an efficient and 

robust method for solving nonlinear problems. (Fatehi et al., 2022) presented an age-structured 

model for the immune response to an HBV infection, considering contributions from cell-

mediated and humoral immunity. The impacts of immune response exhaustion and non- 

infectious subviral particles on the immune response dynamics were analyzed. A comparison 

of different treatment options in the context of this model reveals that drugs targeting aspects 

of the viral life cycle are more effective than exhaustion therapy, a form of therapy mitigating 

immune response exhaustion. Their model was validated using published patient data recorded 

during acute infection. 

(Din & Li, 2022) presented a detailed analysis of a stochastic delayed model which 

governs the transmission mechanism of the Hepatitis B virus (HBV) while considering the 

white noises and the effect of vaccinations. The model was extended to a stochastic model. By 

utilizing the concepts of stochastic theory and by constructing appropriate Lyapunov functions, 

they developed the theory for the extinction and persistence of the disease. Further, their model 

was shown to be ergodic and has a unique stationary distribution. The stochastic bifurcation 

theory was utilized, and a detailed bifurcation analysis of the model is presented. Using the 

standard curve fitting tools, they fitted the model against the available HBV data in Pakistan 

from March 2018 to February 2019 and accordingly, the model parameters were estimated. 

(Manna & Hattaf, 2022) In this paper, we formulate a generalized hepatitis B virus (HBV) 

infection model with two modes of infection transmission and adaptive immunity and 

investigate its dynamical properties. Five equilibria of the model are identified in terms of five 

threshold parameters (Formula presented.), and (Formula presented.). Further, the global 

stability analysis of each equilibrium under certain conditions was carried out by employing the 

suitable Lyapunov function and LaSalle's invariance principle. Finally, they presented an 

example with numerical simulations to illustrate the applicability of our study. Nonetheless, the 

results obtained in this study are valid for a wide class of HBV infection models. 

(Elkhadir et al., 2022) formulated a mathematical model of the hepatitis B virus with 

vaccination and treatments as control strategies. The Stability analysis of the model was 

discussed, and the disease-free equilibrium and endemic equilibrium points were obtained. 

Sensitivity analysis for the parameters that could reduce the spread of the hepatitis B virus was 

studied. Finally, the numerical simulation shows that increasing the value of the vaccine in the 

immunized compartment or in the suspected compartment may decrease the value of R0, 

reducing the spread of the disease. (Dano et al., 2022) proposed and analyzed the combined 

effect of hepatitis B virus (HBV) infection and heavy alcohol consumption on the progression 
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dynamics of liver cirrhosis. To study the progression dynamics of cirrhosis and to describe the 

effect of alcohol intake variation on a chronic hepatitis B patient a deterministic model and a 

logistic function are considered, respectively. They established and proved the existence of 

theorems for forward and backward bifurcations. Finally, numerical simulations reveal that 

heavy alcohol consumption significantly accelerates the progression of liver cirrhosis in chronic 

hepatitis B-infected individuals. (Asfaw Wodajo & Tibebu Mekonnen, 2022) offered HBV 

virus transmission characteristics in the form of a mathematical model with immigration, 

vaccination, and HBV reactivation after recovery, as well as control measures for Hepatitis B 

virus disease transmission. The study's findings show that vaccination and treatment 

interventions play a critical role in reducing HBV transmission and reproduction. It was also 

demonstrated that HBV reactivation contributes significantly to an increase in the infective 

population, which boosts virus transmission, and that a combination of vaccination and 

treatment will be the most effective strategy for controlling HBV infection and reinfection after 

recovery. 

(Aziz ur Rehman et al., 2023) studied the numerical solution of nonlinear delayed 

Immunized Susceptible Latent Infected and Recovered (MSLIR) epidemic model of HBV 

disease. They Euler, RK-4 and the non-standard finite difference (NSFD) techniques for the 

numerical solution of the model. The proposed (NSFD) technique becomes a more efficient and 

reliable numerical technique than the forward Euler and RK-4 scheme. (Yavuz et al., 2023) 

used the Adams–Bashforth numerical scheme to study the behaviours of the Hepatitis-B virus 

(Hepatitis-B). They applied the parameter estimation method to determine model parameters 

and find the curve that best fits the model. The stability analysis of the model was considered, 

and the sensitivity analysis of R0 is examined. The results point out that the order of the 

fractional derivative has an essential effect on the dynamical process of the constructed model 

for Hepatitis-B. 

(Ma & Ma, 2023) investigated the dynamics of a stochastic HBV transmission model 

with media coverage and saturated incidence rate. They obtained the conditions on the 

extinction of HBV, which implies that media coverage helps to control the disease spread and 

the noise intensities on the acute and chronic HBV infection play a key role in disease 

eradication. As a case study, their model fitted to the available hepatitis B data of mainland 

China from 2005 to 2021. (Schmit et al., 2023) used a mathematical model of HBV transmission 

and natural his- tory, calibrated to all available West African data, to project the population-

level health impact and cost-effectiveness of different monitoring strategies for HBV-infected 

individuals not initially eligible for antiviral treatment. They concluded that monitoring less 

frequently than once a year is a cost-effective strategy in a community-based HBV screening 

and treatment program in The Gambia. The optimal strategy depends on the cost-effectiveness 

threshold. In this paper, we proposed an ordinary differential model for the transmission 

dynamics of Hepatitis B virus (HBV); our model included the susceptible, exposed, infected, 

Chronic, and removed individuals. We will incorporate vertical transmission and vaccination 

and extend the model to the optimal control problem. 

 

 

2.  MODEL FORMULATION  

 

Our model consists of the human population at time t represented by ),(tN which is 

further divided into five mutually exclusive compartments representing the susceptible human 
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who are at risk of contracting HBV ),(tS  newly infected individuals who contracted HBV 

which is at the incubation stage ),(tE acute infected individuals whose infection has being 

diagnosed and are at the infectious stage ),(tI  the chronic infected individuals ),(tC who whose 

infections where not diagnosed on time or whose infection has persisted for a long time, the 

individuals are at high risk of liver cirrhosis. Finally, we have the removed compartment ),(tR

for the individuals who received the HBV vaccine and those who recovered from acute of 

chronic infections.  

Thus, our model is represented as in (1) with parameter values given in Table 1. 
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Such that )()()()()()( tRtCtItEtStN ++++= representing the entire human 

population. 

 

Table 1. Model Parameters and their values 

 

Parameter, their meaning, and values 

  Vertical transmission rate 0.071 Assumed 

  Birth rate of human 0.0012 Estimated 

  Vaccination against HBV 0.86 Estimated 

1  The transmission rate of acutely infected humans 0.00034 Assumed 

2  The transmission rate of Chronically infected humans 0.00005 Assumed 

  The natural death rate of humans 0.02 Estimated 

1  Rate of progression from exposed to acute infection 10.3 Assumed 

2  Rate of progression from exposed to chronic infection 6.5 Assumed 

1  The recovery rate of acute infection 0.5 Estimated 
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2  The recovery rate of chronic infection 0.3 Estimated 

1  The death rate due to acute infection 0.01 Assumed 

2  The death rate due to chronic infection 0.05 Assumed 

 

 

2. 1. Basic Properties 

In this section, we explore the basic dynamical features of the model (1). We make the 

following claims: 

 

Lemma 1 
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attracting with respect to the basic model equations (1).  

 

Proof 

Adding equations four equations of (1) gives: 
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


)(tN . Thus, D is positively 

invariant. Further, if 



)(tN , then either the solution enters D  in finite time or )(tN

approaches



, and the infected variables CIE ,, approaches zero. Hence, all solutions 

5

+R  

eventually enters D . Thus in D , the basic model (1) is well posed epidemiologically and 

mathematically (Searles et al., 2017) and (Hethcote, 2000). Hence, it is sufficient to study the 

dynamics of the model equations in D . 

 

Lemma 2 

Let the initial data ,0)0( F  where .,,,,()( RCIEStF =  Then the solution )(tF of the 

model (1) are non- negative for all .0t  Furthermore form (1) and (2), 
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Proof  

 .],0[0)(:0sup1 ttFtt =  Thus .01 t  It follows from the first equation of (1): 
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Similarly, it can be shown that 0F , for all 0t . For the second part of the proof, note 

that: 
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From equations (1) and (2)  
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2. 2. Disease-free equilibrium (DFE) 
 

At equilibrium points, the rate of change of the state variables is zero, that is: 
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0
)()()()()(
=====
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         (3)

 
 

Disease-free equilibrium is an equilibrium where there is no infection. Therefore, the 

infected classes will be zero, making the whole population susceptible. To find the disease-free 

equilibrium of our model equations (1), we equate the rate of change of the non-infectious states 

to zero and completely ignore the infectious classes as they will be zero. 
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2. 3. Endemic equilibrium 

Endemic equilibrium is an equilibrium state where none of the state variables is zero. To 

obtain the endemic equilibrium of our model, we solve equation (1) simultaneously. 
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2. 4. The basic reproductive number 

These models usually have a threshold parameter, known as the basic reproductive 

number 0R  such that when 10 R , then the DFE is locally asymptotically stable, and the 

disease cannot invade the population, but if 10 R , then the DFE is unstable and invasion is 

always possible see (Hethcotet, 2000). We use the next-generation matrix approach as described 

by (Driessche & Watmough, 2002) to derive our effective reproductive number, which is the 

number of secondary infections resulting from the introduction of a single infected individual 

into a population where a proportion is fairly protected. 
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Definitions  

 

1. )(xf i  Is the rate of appearance of a new infection in compartment i. 

2. )(xVi

+  Is the rate of transfer of individuals into compartment i by all other means. 

3. )(xVi

−  Is the rate of transfer of individual out of the compartment i.  

4. +− −= iii VVV . 

 

Here, the basic reproductive number 0R  is the spectral radius (dominant eigenvalue) of 

the product matrix 
IFV −
, i.e. )(0

IFVR −=  .  

Our model has three Infective compartments namely the exposed human E , infected 

human I , and chronically infected human C . It follows that the matrices F and V for the new 

infective terms and remaining transfer terms respectively are given below. Where the entries of 

F and V are partial derivatives of )(xf i , and )(xvi . For our model, F and V are given below.  
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2. 5. Sensitivity analysis of the effective reproductive number )( cR  

Here we present the sensitivity index of the parameters of the effective reproductive 

number ).( cR Sensitivity Analysis is commonly used to determine the robustness of model 

prediction to parameter values since there are usually errors in data collection and presumed 

parameter values. It is used to determine parameters that have a high impact on the )( cR , which 

should be targeted by intervention strategies. The sensitivity indices of the effective 

reproductive number Table 2 and their graphs (Figures 1 to 12) are presented below. 
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Table 2. Sensitivity index of the effective reproductive numer 

 

Parameter Sensitivity sign 

1  +1.67 

2  -1.47 

1  -1.29 

2  +1.29 

  -1.02 

  1.00 

  -0.80 

2  -0.673 

1  +0.624 

  -0.060 

2  +0.002 

1  -0.001 

 

 
 

Figure 1. Shows the effect of the transmission rate of acute infected human. Which shows 

population reduction. It is the most sensitive parameter to the transmission of the disease 
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Figure 2. Shows the effect of the recovery rate of chronic infection, which is the next most 

sensitive parameter to the transmission of the disease 

 

 
 

Figure 3. Shows the effect rate of progression from exposed to acute infection. It shows 

population reduction 
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Figure 4. Shows the effect of the rate of progression from exposed to chronic infection. It 

shows population reduction 

 

 
 

Figure 5. Shows the effect of the natural death rate of humans; it shows a decline in 

population 
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Figure 6. Shows the effect of the birth rate of humans on the disease transmission 

 

 
 

Figure 7. Shows the effect of Vaccination against HBV in disease transmission. The higher 

the percentage vaccinated, the higher the population growth 
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Figure 8. Shows the effect of the transmission rate of Chronically infected human. The higher 

the percentage of infectivity the higher the population of those infected. 

 

 
 

Figure 9. Shows the effect of recovery rate of acute infection. The higher the percentage of 

infectivity the higher the population of those infected 
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Figure 10. Shows the effect of Vertical transmission rate. The higher the percentage of 

Vertical transmission rate the higher the population of those infected 

 

 
 

Figure 11. Shows the effect of death rate due to chronic infection. The higher the mortality, 

the less the population 
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Figure 12. Shows the effect of death rate due to acute infection. The higher the mortality, the 

less the population 

 

 

3.  OPTIMAL CONTROL MODEL 

 

.

,)(

,)(

,))(())(1(

,))(1()1()1(

25141

25223

14113

213212

2121

RCuIuu
dt

dR

CuEu
dt

dC

IuEu
dt

dI

EuSICu
dt

dE

SSICuu
dt

dS











−++=

++−=

++−+=

++−+−=

−+−−−+−=

     (7) 

 

1u  is the cost of vaccination against HBV, 2u is the cost associated with prevention of infection 

via education and public enlightenment, 3u  is the cost associated with testing, this will 

determine if the HBV is acute or chronic, 4u is the cost associated with the treatment of acute 

HBV, and 5u  is the cost associated with the treatment of chronic HBV. The separation of 
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treatment at acute and chronic levels is necessitated by the fact that at the chronic level, multiple 

organs may be affected; hence, more cost is expected. 

The optimal control model above has associated objective function given by: 

 

( )dtuBuBuBCAIAuJ

T

 ++++=
0

2

33

2

22

2

1121)(       (8) 

 

subject to the system (1). 

where T the terminal time and the coefficients are 5432121 ,,,,,, BandBBBBAA  positive 

weights to balance the factors. The objective is to minimize the number of I and C  while 

minimizing the cost coefficients ),(),(),(),( 4321 tutututu and )(5 tu . Thus, we seek an optimal 

control 𝑢1
∗ , 𝑢2

∗ , 𝑢3,
∗  𝑢4

∗ , 𝑢5,
∗  such that where the control set is defined as; 

 

 .],0[,1)(05,4,3,2,1,)(u,u,u,u,u *
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2
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1 TttuimeasurableLebesquesistuu ii ==  

 

3. 1. Pontryagin's Invariant Principle  

The Pontryagin's Invariant principle will be used to determine the necessary and sufficient 

conditions for our optimal control problem to hold. The principle will convert equations (1) and 

(8) to a minimization problem pointwise Hamiltonian (H) with respect to .u,u,u,u,u 54321 . 
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where 54321 ,,,,   are adjoint state variables. 

 

Theorem 1 

Given optimal controls ),(),( 21 tutu )(3 tu , and solutions ,,,,, ***** RCIES  of system (14) 

that optimizes )( iuJ over u , then there exist adjoint variables ,,,,, 54321   satisfying 

.,,,,,0)(, ***** RCIESit
H

t
i

i

i ==



−=







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and with transversality conditions .054321 =====  , and the control *u satisfying the 

optimality conditions given by 3,2,1,0 ==



i

u

H

i

. 
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Proof.  

The optimal control problem exists provided that the integral of J with respect to the 

controls 321 u,u,u  is convex and satisfies the Lipschitz conditions of the state variables. By 

equating the derivatives of the Hamiltonian with respect to the controls to zero (Abdullahi et 

al., 2015; Okosun et al., 2019; Osman et al., 2020), we have  
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It suffices to conclude that: 
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3. 2. Numerical Simulation  

We use the Rung kuta scheme embedded in Matlab to numerically simulate the effects of 

the optimal strategies on the various epidemiological status cum compartments of the model. 

The results of these simulations are given in Figures 13 to 17. The parameter values used in the 

simulation are as given in Table 1. 
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Figure 13. The effect of optimal use of control strategies on the susceptible humans 

 

 
 

Figure 14. The effect of optimal use of control strategies on the exposed humans 
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Figure 15. The effect of optimal use of control strategies on the infected humans 

 

 
 

Figure 16. The effect of optimal use of control strategies on the chronically infected humans 
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Figure 17. The effect of optimal use of control strategies on the recovered humans 

 

 

4.  CONCLUSIONS 

 

In this paper, we developed and analyzed an ordinary differential equation model for the 

spread and control of HBV. In the basic model, we considered a population comprising the 

susceptible, exposed, infected, chronic, and recovered individuals with respect HBV. Firstly, 

we show that our model (1) is biologically and mathematically well-posed and that all solutions 

are always positive.  

The disease-free and endemic equilibria were obtained, and the most significant threshold 

in epidemiology (the basic reproductive number) was derived using the next-generation matrix. 

We conducted a sensitivity analysis of this threshold and extensively juxtaposed it with its 

various parameters graphically using 4 different values for each parameter in Figures 1 to 13. 

The transmission rate of acute (infected) individuals, Figure 1, and the recovery rate of chronic 

individuals, Figure 2, are the most sensitive parameter to the effective reproductive number. 

On the other hand, the death rate of infected and chronic individuals (Figures 11 and 12) 

are the least sensitive parameters to the effective reproductive number. Arising from the 

sensitivity analysis, we extend the basic model to an optimal control model, which was solved 

using Pontryagin’s principle. As expected, we simulated the control strategies to underscore 

their effects per time on the various disease dynamics. 

The result of the simulation (Figures 13 to 17) shows that if the five controls are in place, 

HBV will vanish from the population with time. In the feature, we intend to explore the cost-

effectiveness of the various controls.  
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