PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 14 | 4 | 284–289
Article title

Neuroprotekcyjne właściwości związków pochodzenia roślinnego: triterpeny pentacykliczne

Content
Title variants
EN
Neuroprotective properties of compounds of vegetable origin: pentacyclic triterpenes
Languages of publication
EN PL
Abstracts
EN
The brain is a structure of great variability during the ontogenetic human life. In the first period of life, changes in its structure and activities are due to the processes of development and maturation. Then, due to the remarkable synaptic plasticity, individual brain centres adapt to the requirements of the environment in which the man lives, and his lifestyle. After the age of 40 years, apoptosis, the process of programmed cell death of neurons begins. In a state of disease, the process of necrosis or aponecrosis may cause additional destruction of neurons. The process of neurogenesis based on local or transplanted brain stem cells has a repairing effect in the damaged structures, but may be also associated with psychiatric and neurological diseases. Underlying processes of neuroprotection include antioxidant, anti-inflammatory, anti-apoptotic processes and antidestructive action of Ca. Phytotherapy based on compounds of plant origin has been found to have a supporting function in neuroprotection. In recent years, particular attention is paid to neuroprotective properties of pentacyclic triterpenes and their derivatives. The article presents neuroprotective properties of ursolic, oleanolic, maslinic, asiatic, betulinic, boswellic acid and triterpene saponins from Bupleurum and Panax ginseng. Ginseng saponins additionally increase neurogenesis in the brain. The possibility of using these triterpene compounds in the treatment of many neurological and psychiatric diseases has been suggested. However, it should be pointed out that the direction of their action may depend on the dosage, they may have a different effect on various types of neurons, and they can interact with other drugs used simultaneously. Most of the experiments using triterpenes were performed on animals or cell cultures. Further studies in humans are required to further determine triterpene effect in humans.
PL
Ludzki mózg to struktura wykazująca ogromną zmienność w ciągu życia osobniczego. W pierwszym okresie zmiany budowy i czynności spowodowane są procesami rozwoju i dojrzewania. Następnie, dzięki niezwykłej plastyczności synaptycznej, poszczególne ośrodki mózgu przystosowują się do wymagań środowiska, w jakim człowiek funkcjonuje, i do stylu jego życia. Po 40. roku życia włącza się proces zaprogramowanej śmierci neuronów, czyli apoptozy, a w stanie choroby neurony mogą ginąć w procesie nekrozy lub aponekrozy. Neurogeneza na bazie miejscowych albo transplantowanych komórek macierzystych mózgu pełni funkcję naprawczą w powstałych uszkodzeniach, ale może także mieć związek z chorobami psychicznymi i neurologicznymi. U podstaw neuroprotekcji leżą procesy antyoksydacyjne, przeciwzapalne, antyapoptotyczne i przeciwdziałające destrukcyjnemu działaniu jonów wapnia. Wspierającą funkcję w działaniu neuroprotekcyjnym mogą mieć związki pochodzenia roślinnego, podawane w ramach fitoterapii. W ostatnich latach zwrócono uwagę na neuroprotekcyjne właściwości pentacyklicznych triterpenów i ich pochodnych. W pracy omówiono właściwości neuroprotekcyjne kwasu ursolowego, oleanolowego, maslinowego, asjatowego, betulinowego, bosweliowego oraz saponin triterpenowych pozyskiwanych z roślin Bupleurum i Panax ginseng. Saponiny ginseng dodatkowo nasilają neurogenezę w mózgu. Sugeruje się potencjał stosowania wymienionych związków w terapii wielu chorób neurologicznych i psychicznych – z kilkoma zastrzeżeniami: 1) kierunek działania może zależeć od dawki; 2) związki te mogą różnie działać na neurony różnych rodzajów; 3) mogą istnieć niekorzystne interakcje z innymi lekami stosowanymi równocześnie. Większość doświadczeń z użyciem triterpenów wykonano na zwierzętach bądź w hodowlach komórkowych, zagadnienie wymaga więc dalszych badań na ludziach.
Discipline
Publisher

Year
Volume
14
Issue
4
Pages
284–289
Physical description
Contributors
  • Zakład Fizjologii Doświadczalnej, Międzywydziałowa Katedra Fizjologii Doświadczalnej i Klinicznej Uniwersytetu Medycznego w Łodzi. Kierownik Zakładu: dr hab. n. med. prof. nadzw. Monika Orłowska-Majdak, monika.orlowska-majdak@umed.lodz.pl
References
  • Arvidsson A, Collin T, Kirik D et al.: Neuronal replacement from endogenous precursors in the adult brain stroke. Nat Med 2002; 8: 965-970.
  • Bishnoi M, Patil CS, Kumar A et al.: Co-administration of acetyl-11-keto-beta-boswellic acid, a specific 5-lipoxygenase inhibitor, potentiates the protective effect of COX-2 inhibitors in kainic acid-induced neurotoxicity in mice. Pharmacology 2007; 79: 34-41.
  • Bishnoi M, Patil CS, Kumar A et al.: Protective effects of nimesulide (COX inhibitor), AKBA (5-LOX inhibitor), and their combination in aging-associated abnormalities in mice. Methods Find Exp Clin Pharmacol 2005; 27: 465-470.
  • Blakemore SJ, Frith U: Jak uczy się mózg. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2008. Braun SMG, Jessberger S: Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol 2014; 40: 3-12.
  • Chen Z, Lu T Yue X et al.: Neuroprotective effect of ginsenoside Rbl on glutamate-induced neurotoxicity: with emphasis on autophagy. Neurosci Lett 2010; 482: 264-268.
  • Eriksson PS, Perfilieva E, Bjórk-Eriksson T et al.: Neurogenesis in the adult human hippocampus. Nat Met 1998; 4: 1313-1317.
  • Fang F, Chen X, Huang T et al.: Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim Biophys Acta 2012; 1822: 286-292.
  • Guan T Qian Y, Tang X et al.: Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycemic rats by GLT-1 up-regulation. J Neurosci Res 2011; 89: 1829-1839.
  • Huang L, Guan T, Qian Y et al.: Anti-inflammatory effects of maslinic acid, a natural triterpene, in cultured cortical astrocytes via suppression of nuclear factor-kappa B. Eur J Pharmacol 2011; 672: 169-174.
  • Jew SS, Yoo CH, Lim DY et al.: Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A|3)-induced neurotoxicity. Bioorg Med Chem Lett 2000; 10: 119-121.
  • Jiang B, Xiong Z, Yang J et al.: Antidepressant-like effects of ginsen-oside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012; 166: 1872-1887.
  • Jin K, Minami M, Lan JQ et al.: Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in rat. Proc Natl Acad Sci USA 2001; 98: 4710-4715.
  • Karima O, Riazi G, Yousefi R et al.: The enhancement effect of beta-boswellic acid on hippocampal neurites outgrowth and branching (an in vitro study). Neurol Sci 2010; 31: 315-320.
  • Kim BK, Shin MS, Kim CJ et al.: Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. J Exerc Rehabil 2014; 28: 2-8.
  • Lee KY, Bae ON, Weinstock S et al.: Neuroprotective effect of asiatic acid in rat model of focal embolic stroke. Biol Pharm Bull 2014; 37: 1397-1401.
  • Li L, Zhang X, Cui L et al.: Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res 2013; 1497: 32-39.
  • Li ZY, Guo Z, Liu YM et al.: Neuroprotective effects of total saiko-saponins of Bupleurum yinchowense on corticosterone-induced apoptosis in PC12 cells. J Ethnopharmacol 2013; 148: 794-803.
  • Lin T Liu Y, Shi M et al.: Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J Ethnopharmacol 2012; 142: 754-761.
  • Lu J, Zheng YL, Wu DM et al.: Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 2007; 74: 1078-1090.
  • Lu Q, Xia N, Xu H et al.: Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric Oxide 2011; 24: 132-138.
  • Malberg JE, Eisch AJ, Nestler EJ et al.: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104-9110.
  • Martin R, Carvalho-Tavares J, Hernandez M et al.: Beneficial actions of oleanolic acid in an experimental model of multiple sclerosis: a potential therapeutic role. Biochem Pharmacol 2010; 79: 198-208.
  • Martin R, Hernandez M, Cordova C et al.: Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. Br J Pharmacol 2012; 166: 1708-1723.
  • Pajonk FG, Wobrock T, Gruber O et al.: Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 2010; 67: 133-143.
  • Parent JM, Valentin VV, Lowenstein DH: Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci 2002; 22: 3174-3188.
  • Qian Y, Guan T, Tang X et al.: Astrocytic glutamate transporter-dependent neuroprotection against glutamate toxicity: an in vitro study of maslinic acid. Eur J Pharmacol 2011; 651: 59-65.
  • Sahay A, Hen R: Adult hippocampal neurogenesis in depression. Nat Neurosci 2007; 10: 1110-1115.
  • Sakanaka M, Zhu P, Zhang B et al.: Intravenous infusion of dihy-droginsenoside Rb1 prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma 2007; 24: 1037-1054.
  • Sarkar C, Pal S, Das N et al.: Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: experimental and biochemical studies. Food Chem Toxicol 2014; 66: 224-236.
  • Scharfman HE, Hen R: Neuroscience. Is more neurogenesis always better? Science 2007; 315: 336-338.
  • Shih YH, Chein YC, Wang JY et al.: Ursolic acid protects hippocampal neurons against kainate-induced excitotoxicity in rats. Neurosci Lett 2004; 362: 136-140.
  • Soumyanath A, Zhong YP, Gold SA et al.: Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in vitro. J Pharm Pharmacol 2005; 57: 1221-1229.
  • Spalding KL, Bergmann O, Alkass K et al.: Dynamics of hippocampal neurogenesis in adult humans. Cell 2013; 153: 1219-1227.
  • Wang B, Feng G, Tang C et al.: Ginsenoside Rd maintains adult neural stem cell proliferation during lead-impaired neurogenesis. Neurol Sci 2013; 34: 1181-1188.
  • Wang C, Zhang M, Sun C et al.: Sustained increase in adult neurogenesis in the rat hippocampal dentate gyrus after transient brain ischemia. Neurosci Lett 2011; 488: 70-75.
  • Wattanathorn J, Mator L, Muchimapura S et al.: Positive modulation of cognition and mood in healthy elderly volunteer following the administration of Centella asiatica. J Ethnopharmacol 2008; 116: 325-332.
  • Wilkinson K, Boyd JD, Glicksman M et al.: A high content drug screen identifies ursolic acid as an inhibitor of amyloid ß protein interaction with its receptor CD36. J Biol Chem 2011; 286: 34914-34922.
  • Xu M, Liu J, Qian J et al. : Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin 2012; 33: 578-587.
  • Yakovlev AG, Faden AI: Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 2004; 1: 5-16.
  • Yin MC: Anti-glycative potential of triterpenes: a mini-review. Bio-Medicine 2012; 2: 2-9.
  • Zheng W, ZhuGe Q, Zhong M et al.: Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma 2013; 30: 1872-1880.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f5da431a-57da-426f-83d8-41f3703f519d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.