PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 13 | 1 | 40–49
Article title

Wybrane farmakokinetyczne interakcje leków w trakcie leczenia padaczki. Część I

Content
Title variants
EN
Selected pharmacokinetic drug interactions during treatment of epilepsy. Part I
Languages of publication
PL
Abstracts
EN
Epilepsy is one of the oldest known diseases. The word epilepsia has 2 500 years and comes from the Greek epi­lamvanein, which means ‘attack’, ‘grab’, ‘possess’. Seizures were treated as an expression possessed by demons, evil spirits and therefore for a long time it was considered as “sacred disease”. Epilepsy is not a disease in the clas­sic sense, but rather a complex pathophysiological process, the numerous and complex symptoms are the result of various disorders of brain function. Epilepsy is one of the most difficult problems neuroepidemiology. Seizures are an expression of pathological brain activity in different areas of the course of many disease processes. Source discharges in the clinical pathological form of epileptic seizure can be traumatic scars, compression changes, in­flammatory, degenerative, vascular fire or developmental disorders. Focal epileptic tissue is modified zone lying between the damage and the area healthy. This is a group of neurons that generates periodic paroxysmal bioelectri­cal activity in the form of paroxysmal discharge depolarization generating clinical seizures. Most epilepsies are pri­mary brain disorder, but there are also many processes outbrain disturbing systemic homeostasis. In the treatment of epilepsy, there is no one standard way to proceed. The aim of epilepsy treatment is complete seizure control and getting the least side effects during treatment with antiepileptic drugs. Knowledge and experience are the most im­portant practitioners of the factors contributing to the care of patients with epilepsy. The drug should be tailored to the type of seizure or epilepsy syndrome, the frequency and severity of seizures. The emergence of a new gener­ation of drugs gave them some advantage over older-generation drugs. They are characterized by greater specific­ity of action, improved pharmacokinetic properties, better evaluation of clinical trials and less side effects. These drugs are in clinical trials, and direct observation of lessons can be drawn that they are very useful in some types of epilepsy. There is no doubt that further research and observation
PL
Padaczka jest jedną z najdłużej znanych chorób. Słowo epilepsia liczy 2500 lat i pochodzi od greckiego epilamvanein, co znaczy ‘atakować’, ‘chwycić’, ‘posiąść’. Napady padaczkowe traktowane były jako wyraz owładnięcia przez demony, złe duchy, w związku z czym padaczkę przez długi czas uważano za „świętą chorobę”. Nie jest to choroba w klasycznym znaczeniu, a raczej skomplikowany proces patofizjologiczny, którego bardzo liczne i złożone objawy są wynikiem różnych zaburzeń funkcji mózgu. Padaczka należy do najtrudniejszych problemów neuroepidemiolo­gicznych. Napady padaczkowe są wyrazem patologicznej czynności różnych obszarów mózgu w przebiegu wielu procesów chorobowych. Źródłem patologicznych wyładowań w klinicznej formie napadu padaczkowego mogą być blizny pourazowe, zmiany uciskowe, zapalne, zwyrodnieniowe, ogniska naczyniopochodne czy zaburze­nia rozwojowe. Ogniskiem padaczkowym jest strefa zmienionej tkanki, leżącej między uszkodzeniem a okolicą zdrową. To grupa neuronów generująca okresowo napadową czynność bioelektryczną w formie napadowych wy­ładowań depolaryzacyjnych generujących kliniczny napad padaczkowy. Większość padaczek to zaburzenia pier­wotne mózgowe, choć istnieje również wiele procesów pozamózgowych zaburzających homeostazę ustrojową. W leczeniu padaczki nie występuje jeden standardowy sposób postępowania. Celem terapii jest całkowita kontrola napadów i uzyskanie jak najmniejszych objawów niepożądanych podczas leczenia lekami przeciwpadaczkowymi. Wiedza i doświadczenie lekarzy praktyków są najistotniejszym czynnikiem wpływającym na opiekę nad chorym z padaczką. Lek powinien być dostosowany do typu napadu lub zespołu padaczkowego, częstości i ciężkości na­padów. Pojawienie się leków nowej generacji dało im pewną przewagę w stosunku do starszych leków. Cechują je: większa swoistość działania, lepsze właściwości farmakokinetyczne, lepsza ocena klinicznych prób i słabsze objawy niepożądane. Z badań klinicznych i z bezpośrednich obserwacji wynika, iż są to leki bardzo przydatne w niektó­rych typach padaczek. Nie ulega wątpliwości, że potrzebne są dalsze badania i obserwacje.
Discipline
Publisher

Year
Volume
13
Issue
1
Pages
40–49
Physical description
Contributors
  • Klinika Neurologii i Epileptologii, Katedra Chorób Układu Nerwowego, Uniwersytet Medyczny w Łodzi, magda-kacperska@o2.pl
  • Klinika Neurologii i Epileptologii, Katedra Chorób Układu Nerwowego, Uniwersytet Medyczny w Łodzi
  • Klinika Neurologii i Epileptologii, Katedra Chorób Układu Nerwowego, Uniwersytet Medyczny w Łodzi
  • Klinika Neurologii i Epileptologii, Katedra Chorób Układu Nerwowego, Uniwersytet Medyczny w Łodzi
References
  • 1.Warlow C.: Neurologia. Wydawnictwo Lekarskie PZWL, Warszawa 1996.
  • 2.Sridharan R.: Epidemiology of epilepsy. Current Science 2002; 82: 664–670.
  • 3.Mac T.L., Tran D.S., Quet F. i wsp.: Epidemiology, aetiology, and clinical management of epilepsy in Asia: a systematic review. Lancet Neurol. 2007; 6: 533–543.
  • 4.Cendrowski W.: Neuroepidemiologia kliniczna. Wydawnictwo Volumed, Wrocław 1997.
  • 5.Pedley T.A., Bazil C.W., Morrell M.I.: Padaczka. W: Rowland L.P. (red.): Neurologia Merritta. Elsevier Urban & Partner, Wrocław 2004: 816–837.
  • 6.Hauser W.A.: Seizure disorders: the changes with age. Epi­lepsia 1992; 33 supl. 4: S6–S14.
  • 7.Nadkarni S., LaJoie J., Devinsky O.: Current treatments of epilepsy. Neurology 2005; 64 (supl. 3): S2–S11.
  • 8.French J.A., Kanner A.M., Bautista J. i wsp.: Efficacy and tol­erability of the new antiepileptic drugs II: treatment of refrac­tory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcom­mittee of the American Academy of Neurology and the Amer­ican Epilepsy Society. Neurology 2004; 62: 1261–1273.
  • 9.French J.A., Kanner A.M., Bautista J. i wsp.: Efficacy and tolerability of the new antiepileptic drugs I: treatment of new onset epilepsy: report of the Therapeutics and Tech­nology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2004; 62: 1252–1260.
  • 10.Czapliński P.: Najnowsze wytyczne i poglądy dotyczące sto­sowania nowych leków przeciwpadaczkowych u dorosłych. Neurologia – Materiały konferencji szkoleniowej. Warszawa 2005: 8–17.
  • 11.Stephen L.J., Brodie M.J.: Seizure freedom with more than one antiepileptic drug. Seizure 2002; 11: 349–351.
  • 12.Perucca E., French J., Bialer M.: Development of new anti­epileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 2007; 6: 793–804.
  • 13.Elger C.E., Fernández G.: Options after the first antiepileptic drug has failed. Epilepsia 1999; 40 supl. 6: S9–S12; discus­sion S73–S74.
  • 14.Sisodiya S.: Drug resistance in epilepsy: not futile, but com­plex? Lancet Neurol. 2003; 2: 331.
  • 15.Motta E., Gołba A., Dębski M., Lasek-Bal A.: Lekooporność napadów padaczkowych rzekoma i prawdziwa. W: Klimek A. (red.): Determinanty napadów i lekooporności w padaczce. Medical Communications, Warszawa 2007: 27–30.
  • 16.Białecka M., Hnatyszyn G., Bielicka-Cymerman J., Droździk M.: [The effect of MDR1 gene polymorphism in the pathogenesis and the treatment of drug-resistant epilepsy]. Neurol. Neuro­chir. Pol. 2005; 39: 476–481.
  • 17.Kwan P., Brodie M.J.: Definition of refractory epilepsy: defin­ing the indefinable? Lancet Neurol. 2010: 9: 27–29.
  • 18.Kwan P., Arzimanoglou A., Berg A.T. i wsp.: Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strat­egies. Epilepsia 2010; 51: 1069–1077.
  • 19.Patsalos P.N., Perucca E.: Clinically important drug interac­tions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003; 2: 347–356.
  • 20.Patsalos P.N., Perucca E.: Clinically important drug interac­tions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003; 2: 473–481.
  • 21.Wiela-Hojeńska A., Orzechowska-Juzwenko K.: Niepożądane działania leków. W: Orzechowska-Juzwenko K. (red.): Farma­kologia kliniczna. Znaczenie w praktyce medycznej. Górnicki Wydawnictwo Medyczne, Wrocław 2006: 209–246.
  • 22.Carrière V., Chambaz J., Rousset M.: Intestinal responses to xenobiotics. Toxicol. In Vitro 2001; 15: 373–378.
  • 23.Lin J.H., Yamazaki M.: Role of P-glycoprotein in pharma­cokinetics: clinical implications. Clin. Pharmacokinet. 2003; 42: 59–98.
  • 24.Zhang L., Hou D., Chen X. i wsp.: Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evi­dence of cross-kingdom regulation by microRNA. Cell Res. 2012; 22: 107–126.
  • 25.Malloy M.J., Ravis W.R., Pennell A.T., Diskin C.J.: Effect of cholestyramine resin on single dose valproate pharmacoki­netics. Int. J. Clin. Pharmacol. Ther. 1996; 34: 208–211.
  • 26.Callaghan J.T., Tsuru M., Holtzman J.L., Hunninghake D.B.: Effect of cholestyramine and colestipol on the absorption of phenytoin. Eur. J. Clin. Pharmacol. 1983; 24: 675–678.
  • 27.Phillips W.A., Ratchford J.M., Schultz J.R.: Effects of colesti­pol hydrochloride on drug absorption in the rat II. J. Pharm. Sci. 1976; 65: 1285–1291.
  • 28.Gareri P., Gravina T., Ferreri G., De Sarro G.: Treatment of epilepsy in the elderly. Prog. Neurobiol. 1999; 58: 389–407.
  • 29.Busch J.A., Radulovic L.L., Bockbrader H.N. i wsp.: Effect of Maalox TC on single-dose pharmacokinetics of gabapen­tin capsules in healthy subjects. Pharm. Res. 1992; 9 (supl.): S315.
  • 30.Burstein A.H., Cox D.S., Mistry B., Eddington N.D.: Phenyt­oin pharmacokinetics following oral administration of phe­nytoin suspension and fosphenytoin solution to rats. Epilep­sy Res. 1999; 34: 129–133.
  • 31.Kitchen D., Smith D.: Problems with phenytoin administra­tion in neurology/neurosurgery ITU patients receiving enter­al feeding. Seizure 2001; 10: 265–268.
  • 32.Yagnik P.M., Schraeder P.L., O’Hara K.: Therapeutic phenyt­oin levels with tube feeding: new techniques. J. Epilepsy 1997; 10: 22–25.
  • 33.Stella V.J.: A case for prodrugs: fosphenytoin. Adv. Drug Deliv. Rev. 1996; 19: 311–330.
  • 34.Poondru S., Devaraj R., Boinpally R.R., Yamsani M.R.: Time-dependent influence of pentoxifylline on the pharmaco­kinetics of orally administered carbamazepine in human sub­jects. Pharmacol. Res. 2001; 43: 301–305.
  • 35.Vaucheret H., Chupeau Y.: Ingested plant miRNAs regulate gene expression in animals. Cell Res. 2012; 22: 3–5.
  • 36.Smith C.: Drug interactions between psychoactive agents and antiepileptic agents. Epilepsy Behav. 2001; 2: 92–105.
  • 37.Zhou S.F., Zhou Z.W., Li C.G. i wsp.: Identification of drugs that interact with herbs in drug development. Drug Discov. Today 2007; 12: 664–673.
  • 38.Fugh-Berman A.: Herb-drug interactions. Lancet 2000; 355: 134–138.
  • 39.Tian R., Koyabu N., Morimoto S. i wsp.: Functional induc­tion and de-induction of P-glycoprotein by St. John’s wort and its ingredients in a human colon adenocarcinoma cell line. Drug Metab. Dispos. 2005; 33: 547–554.
  • 40.Baltes S., Gastens A.M., Fedrowitz M. i wsp.: Differences in the transport of the antiepileptic drugs phenytoin, levetirace­tam and carbamazepine by human and mouse P-glycopro­tein. Neuropharmacology 2007; 52: 333–346.
  • 41.Zhang C., Zuo Z., Kwan P., Baum L.: In vitro transport pro­file of carbamazepine, oxcarbazepine, eslicarbazepine ace­tate, and their active metabolites by human P-glycoprotein. Epilepsia 2011; 52: 1894–1904.
  • 42.Zhang C., Kwan P., Zuo Z., Baum L.: In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010; 86: 899–905.
  • 43.Baltes S., Fedrowitz M., Tortós C.L. i wsp.: Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J. Pharmacol. Exp. Ther. 2007; 320: 331–343.
  • 44.Löscher W., Potschka H.: Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther. 2002; 301: 7–14.
  • 45.Potschka H., Fedrowitz M., Löscher W.: P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis exper­iments in rats. Neurosci. Lett. 2002; 327: 173–176.
  • 46.Summers M.A., Moore J.L., McAuley J.W.: Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refrac­tory epilepsy. Ann. Pharmacother. 2004; 38: 1631–1634.
  • 47.Iannetti P., Spalice A., Parisi P.: Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 2005; 46: 967–969.
  • 48.Mottino A.D., Hoffman T., Jennes L., Vore M.: Expression and localization of multidrug resistant protein mrp2 in rat small intestine. J. Pharmacol. Exp. Ther. 2000; 293: 717–723.
  • 49.Leslie E.M., Deeley R.G., Cole S.P.: Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 2005; 204: 216–237.
  • 50.Garg S.K., Kumar N., Bhargava V.K., Prabhakar S.K.: Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin. Pharmacol. Ther. 1998; 64: 286–288.
  • 51.Kumar N., Garg S.K., Prabhakar S.: Lack of pharmacokinet­ic interaction between grapefruit juice and phenytoin in healthy male volunteers and epileptic patients. Methods Find. Exp. Clin. Pharmacol. 1999; 21: 629–632.
  • 52.Vernhet L., Séité M.P., Allain N. i wsp.: Arsenic induces expression of the multidrug resistance-associated protein 2 (MRP2) gene in primary rat and human hepatocytes. J. Phar­macol. Exp. Ther. 2001; 298: 234–239.
  • 53.Al-Humayyd M.S.: Effect of metoclopramid on lamotrigine absorption in rabbits. Int. J. Pharm. 1996; 144: 171–175.
  • 54.Mustafa A.A., Al-Humayyd M.S.: The effect of parenteral imipramine on the oral absorption of lamotrigine in rats. Int. J. Pharm. 1997; 152: 207–213.
  • 55.Manzi S.F., Shannon M.: Drug interactions – a review. Clin. Pediatr. Emerg. Med. 2005; 6: 93–102.
  • 56.Kratochwil N.A., Huber W., Müller F. i wsp.: Predicting plasma protein binding of drugs: a new approach. Biochem. Pharma­col. 2002; 64: 1355–1374.
  • 57.Sandson N.B., Marcucci C., Bourke D.L., Smith-Lamacchia R.: An interaction between aspirin and valproate: the relevance of plasma protein displacement drug-drug interactions. Am. J. Psychiatry 2006; 163: 1891–1896.
  • 58.Sudlow G., Birkett D.J., Wade D.N.: The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 1975; 11: 824–832.
  • 59.Petitpas I., Bhattacharya A.A., Twine S. i wsp.: Crystal struc­ture analysis of warfarin binding to human serum albumin: anatomy of drug site I. J. Biol. Chem. 2001; 276: 22804–22809.
  • 60.Kragh-Hansen U., Chuang V.T., Otagiri M.: Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 2002; 25: 695–704.
  • 61.Mandula H., Parepally J.M., Feng R., Smith Q.R.: Role of site-specific binding to plasma albumin in drug availability to brain. J. Pharmacol. Exp. Ther. 2006; 317: 667–675.
  • 62.Tsanaclis L.M., Allen J., Perucca E. i wsp.: Effect of valproate on free plasma phenytoin concentrations. Br. J. Clin. Pharma­col. 1984; 18: 17–20.
  • 63.Dahlqvist R., Borgå O., Rane A. i wsp.: Decreased plasma protein binding of phenytoin in patients on valproic acid. Br. J. Clin. Pharmacol. 1979; 8: 547–552.
  • 64.Joerger M., Huitema A.D., Boogerd W. i wsp.: Interactions of serum albumin, valproic acid and carbamazepine with the pharmacokinetics of phenytoin in cancer patients. Basic Clin. Pharmacol. Toxicol. 2006; 99: 133–140.
  • 65.Lacerda G., Krummel T., Sabourdy C. i wsp.: Optimizing therapy of seizures in patients with renal or hepatic dysfunc­tion. Neurology 2006; 67 (supl. 4): S28–S33.
  • 66.Dutkiewicz G., Wojcicki J., Gawronska-Szklarz B.: [The influ­ence of hyperlipidemia on pharmacokinetics of free phenytoin]. Neurol. Neurochir. Pol. 1995; 29: 203–211.
  • 67.Dybkowska K., Pakulski C., Drobnik L.: [Brain barriers. Part I. Blood-brain tissue barrier]. Neurol. Neurochir. Pol. 1997; 31: 1217–1225.
  • 68.Pakulski C., Dybkowska K., Drobnik L.: [Brain barriers. Part II. Blood/cerebrospinal fluid barrier and cerebrospinal fluid /brain tissue barrier]. Neurol. Neurochir. Pol. 1998; 32: 133–139.
  • 69.Pardridge W.M.: Blood-brain barrier delivery. Drug Discov. Today 2007; 12: 54–61.
  • 70.Pardridge W.M.: The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2: 3–14.
  • 71.Kurkowska-Jastrzebska I., Pilip S., Niedzielska K., Barańska­-Gieruszczak M.: Padaczka lekooporna a czynniki genetyczne. Farmakoterapia w Psychiatrii i Neurologii 2005; 21: 25–31.
  • 72.Sisodiya S.M., Lin W.R., Harding B.N. i wsp.: Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002; 125: 22–31.
  • 73.Dean M., Hamon Y., Chimini G.: The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 2001; 42: 1007–1017.
  • 74.Hollenstein K., Frei D.C., Locher K.P.: Structure of an ABC transporter in complex with its binding protein. Nature 2007; 446: 213–216.
  • 75.Kedzierska S.: [Structure, function and mechanisms of action of ATPases from the AAA superfamily of proteins]. Postepy Biochem. 2006; 52: 330–338.
  • 76.Schlachetzki F., Zhang Y., Boado R.J., Pardridge W.M.: Gene therapy of the brain: the trans-vascular approach. Neurology 2004; 62: 1275–1281.
  • 77.Pardridge W.M.: Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain. Curr. Opin. Drug Discov. Devel. 2003; 6: 683–691.
  • 78.Bomanji J.B., Costa D.C., Ell P.J.: Clinical role of positron emis­sion tomography in oncology. Lancet Oncol. 2001; 2: 157–164.
  • 79.Killian D.M., Chikhale P.J.: Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci. Lett. 2001; 306: 1–4.
  • 80.Lasoń W., Leśkiewicz M.: Neurobiologiczne podłoże lekoopor­ności w padaczce. W: Klimek A. (red.): Determinanty napadów i lekooporności w padaczce. Medical Communications, War­szawa 2007: 10–16.
  • 81.Remy S., Beck H.: Molecular and cellular mechanisms of phar­macoresistance in epilepsy. Brain 2006; 129: 18–35.
  • 82.Marchi N., Hallene K.L., Kight K.M. i wsp.: Significance of MDR1 and multiple drug resistance in refractory human epi­leptic brain. BMC Med. 2004; 2: 37.
  • 83.Sisodiya S.M., Martinian L., Scheffer G.L. i wsp.: Vascular colocalization of P-glycoprotein, multidrug-resistance asso­ciated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuro­pathol. Appl. Neurobiol. 2006; 32: 51–63.
  • 84.Lazarowski A., Massaro M., Schteinschnaider A. i wsp.: Neuronal MDR-1 gene expression and persistent low levels of anticonvulsants in a child with refractory epilepsy. Ther. Drug Monit. 2004; 26: 44–46.
  • 85.Lazarowski A.. Lubieniecki F., Camarero S. i wsp.: Multidrug resistance proteins in tuberous sclerosis and refractory epi­lepsy. Pediatr Neurol. 2004; 30: 102–106.
  • 86.Ramos A.J., Lazarowski A., Villar M.J., Brusco A.: Transient expression of MDR-1/P-glycoprotein in a model of partial cortical devascularization. Cell. Mol. Neurobiol. 2004; 24: 101–107.
  • 87.Lazarowski A., Ramos A.J., García-Rivello H. i wsp.: Neu­ronal and glial expression of the multidrug resistance gene product in an experimental epilepsy model. Cell. Mol. Neu­robiol. 2004; 24: 77–85.
  • 88.Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J.: Experimental and computational approaches to estimate sol­ubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001; 46: 3–26.
  • 89.Walther B., Ghersi-Egea J.F., Minn A., Siest G.: Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 1986; 375: 338–344.
  • 90.Dutheil F., Beaune P., Loriot M.A.: Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cyto­chrome P450 enzymes in normal and pathological human brain. Biochimie 2008; 90: 426–436.
  • 91.Ghosh C., Gonzalez-Martinez J., Hossain M. i wsp.: Pattern of P450 expression at the human blood-brain barrier: roles of epileptic condition and laminar flow. Epilepsia 2010; 51: 1408–1417.
  • 92.Volk B., Amelizad Z., Anagnostopoulos J. i wsp.: First evi­dence of cytochrome P-450 induction in the mouse brain by phenytoin. Neurosci. Lett. 1988; 84: 219–224.
  • 93.Jóźwicka M., Głąbiński A.: Rola niekodującego RNA w patolo­gii układu nerwowego. Aktualn. Neurol. 2012; 12: 57–64.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f5afcc61-a279-4ee0-8067-3ad4ad720507
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.