PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 97 | 51-68
Article title

Noether and matrix methods to construct local symmetries of Lagrangians

Content
Title variants
Languages of publication
EN
Abstracts
EN
We exhibit an elementary presentation of matrix and Noether techniques to construct infinitesimal point symmetries of Lagrangians. Besides, we employ the Lanczos approach to Noether’s theorem to obtain the first integral associated with each symmetry. We show applications to several singular Lagrangians of interest in classical mechanics.
Discipline
Year
Volume
97
Pages
51-68
Physical description
Contributors
  • Depto. de Matemáticas, ESFM-Instituto Politécnico Nacional, Edif. 9, Col. Lindavista CP 07738, CDMX, México
author
  • CBI-Área de Física-AMA, UAM-Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamps., CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, Col. Lindavista, CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, Col. Lindavista, CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, Col. Lindavista, CP 07738, CDMX, México
References
  • [1] E. Noether, Nachr. Ges. Wiss. Göttingen 2 (1918) 235-257.
  • [2] D. E. Neuenschwander, Emmy Noether’s wonderful theorem, The Johns Hopkins University Press, Baltimore, USA (2011).
  • [3] Y. Kosmann-Schwarzbach, The Noether theorems, Springer, New York (2011).
  • [4] Monika Havelková, Comm. in Maths. 20(1) (2012) 23-32.
  • [5] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, Operations Research and Applications Journal (India) 2(1) (2015) 1-8.
  • [6] E. C. G. Sudarshan, N. Mukunda, Classical dynamics: A modern perspective, John Wiley and Sons, New York (1974).
  • [7] H. J. Rothe, K. D. Rothe, Classical and quantum dynamics of constrained Hamiltonian systems, World Scientific Lecture Notes in Physics 81, Singapore (2010).
  • [8] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, Bull. of Kerala Maths. Assoc. 12(1) (2015) 43-52.
  • [9] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, Prespacetime Journal 6(3) (2015) 238-246.
  • [10] Nina Byers, Emmy Noether’s discovery of the deep connection between symmetries and conservation laws, Proc. Symp. Heritage E. Noether, Bar Ilan University, Tel Aviv, Israel, Dec. 2-3 (1996).
  • [11] H. Rund, The Hamilton-Jacobi theory in the calculus of variations. Its role in Mathematics and Physics, D. Van Nostrand, London (1966).
  • [12] D. Lovelock, H. Rund, Tensors, differential forms and variational principles, Dover-New York (1989).
  • [13] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, Prespacetime Journal 6(4) (2015) 322-325.
  • [14] C. Lanczos, The variational principles of mechanics, University of Toronto Press (1970).
  • [15] C. Lanczos, Bull. Inst. Math. Appl. 9(8) (1973) 253-258.
  • [16] I. Guerrero-Moreno, J. López-Bonilla, R. López-Vázquez, Prespacetime Journal 7(13) (2016) 1789-1792.
  • [17] M. Henneaux, C. Teitelboim, J. Zanelli, Nucl. Phys. B 332(1) (1990) 169-188.
  • [18] M. Henneaux, C. Teitelboim, Quantization of gauges systems, Princeton University Press, New Jersey (1994).
  • [19] G. F. Torres del Castillo, C. Andrade-Mirón, R. Bravo-Rojas, Rev. Mex. Fís. E 59 (2013) 140-147.
  • [20] G. F. Torres del Castillo, Rev. Mex. Fís. 60 (2014) 129-135.
  • [21] M. A. Sinaceur, Rev. Hist. Sci. 43 (1990) 221-294.
  • [22] D. Laugwitz, Bernhard Riemann 1826-1866. Turning points in the conception of mathematics, Birkhäuser, Boston, USA (2008).
  • [23] A. Shirzad, J. Phys. A: Math. Gen. 31(11) (1998) 2747-2760.
  • [24] P.A.M. Dirac, Lectures on quantum mechanics, Yeshiva University, New York (1964).
  • [25] M. Chaichian, D. Louis-Martinez, J. Math. Phys. 35(12) (1994) 6536-6545.
  • [26] L. J. Gerstein, Am. Math. Monthly 95(10) (1988) 950-952.
  • [27] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge University Press (1990).
  • [28] G. Bahadur Thapa, P. Lam-Estrada, J. López-Bonilla, World Scientific News 95 (2018) 100-110.
  • [29] J. López-Bonilla, J. Morales, G. Ovando, J. Zhejiang Univ. Sci. A 8(4) (2007) 665-668.
  • [30] C. G. J. Jacobi, Vorlesungen über dynamik (1842-43) [First edited in 1866 by Clebsch].
  • [31] J. Mehra, Einstein, Hilbert, and the theory of gravitation, D. Reidel Pub., Boston, USA (1974).
  • [32] J. R. Schütz, Nachr. Ges. Wiss. Göttingen (1897) 110.
  • [33] G. Hamel, Math. Ann. 59 (1904) 416-434.
  • [34] G. Herglotz, Ann. der Physik 36 (1911) 493-517.
  • [35] E. P. Wigner, Nachr. Ges. Wiss. Göttingen (1927) 375-381.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f5789eac-7abc-4d56-a551-f2795d271c5a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.