PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 143 | 203-223
Article title

A modified Nuclear Model for Binding Energy of Nuclei

Content
Title variants
Languages of publication
EN
Abstracts
EN
A new nuclear model to calculate the binding energy of nuclei is proposed. The nucleus is assumed to be composed of two regions; the inner core region and surface region. The inner core is assumed to be composed of Z proton-neutron pairs (Z = N) and the surface region is composed of the unpaired neutrons for a nucleus in which N>Z. The interaction between the core and neutrons in the surface region is assumed to be such that it leads to an average potential Vo in which each neutron in the surface region can move. Knowing the experimental values for the binding energy of nuclei, this average interaction potential Vo has been calculated for light, medium and heavy nuclei. It is found that Vo varies for isotopes and isotones. For isotopes the value of Vo decreases as the neutron number (N) in the surface region of the nucleus increases. The decrease in Vo is quite large when the neutron number increases by unity in light nuclei compared to heavy nuclei. For isotones, the value of Vo increases with an increase in proton number (Z). This is evident for both light nuclei and heavy nuclei.
Discipline
Year
Volume
143
Pages
203-223
Physical description
Contributors
author
  • Department of Renewable Energy and Technology, Turkana University College, P.O. Box 69-30500, Lodwar, Kenya
author
  • Department of Physics, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
author
  • Department of Physics, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya
References
  • [1] Von Weizsäcker, C. F. The Theory of Nuclear Masses. Magazine for Physics, 96(7-8) (1935) 431-458
  • [2] Bohr N., and Wheeler J. A. The Mechanism of Nuclear Fission. Phys. Rev. 56 (1939) 426.
  • [3] Bethe H. A., and Bacher, R. F. Nuclear Physics. A Stationary States of Nuclei. Rev. Mod. Phys. 8 (1936) 82
  • [4] Goeppert, M. M. (1949). On Closed Shells in Nuclei. Phys. Rev. 75 (1969). https://doi.org/10.1103/physRev.75.1969.
  • [5] Gharamany, N., Gharaati, S., Ghanaatian, M. New Approach to Nuclear binding Energy in Integrated Nuclear Model. Journal of Theoretical and Applied Physics 6 (3) (2012) 2
  • [6] Gangopadhyay, G. Improvement in a Phenomenological Formula for Ground State Binding Energies. International Journal of Modern Physics, 25(8) (2016) 3-5
  • [7] Bao, M., He, Z., Lu, Y., Zhao, Y. M., and Arima, A. Generalized Garvey-Kelson Mass Relations. Phys. Rev. C 88 (2013) 064325. https://doi.org/10.1103/PhysRevC.88.064325
  • [8] Meyerhof, W. E. Elements of Nuclear Physics. New York: McGraw. (1967).
  • [9] Strutinsky, V. M. Shell Effects in Nuclear Masses and Deformation Energies. Nuclear Physics A 95 (1967) 420-442. https://doi.org/10.1016/0375-9474(67)90510-6
  • [10] Dufflo, J., Zuker, A. P. Modification of the Nuclear Landscape in the Inverse Problem Framework using the Generalized Bethe-Weizsäcker Mass Formula. Phys. Rev. Lett C 59 (1999) 2347
  • [11] Upadhyay, T. C. Introduction to Modern Physics. Anmol Publications Pvt. Ltd. (1999).
  • [12] Haxel O., Jensen J.D.H., and Suess H. E. Model-based Interpretation of Excellent Nucleon Numbers in Nuclear Construction. Magazine for Physics, 128 (2) (1950) 295-311
  • [13] Heyde, K. Basic Ideas and Concepts in Nuclear Physics. Bristol: Institute of Physics. (2004).
  • [14] Amusia, M. Ya., and Korn, Y. Yu. Application of the Nuclear Liquid Drop Model to Atomic and Molecular Physics Problems. Contemporary Physics 41 (4) (2000) 219-229
  • [15] Zelevinsky, V., and Volya, A. Liquid Drop Model (2017). Doi:10.1002/9783527693610.ch5
  • [16] Sree Harsha N. R. The Tightly Bound Nuclei in the Liquid Drop Model. European Journal of Physics, 39 (3) (2018) 035802
  • [17] Chemogos, P. K., Muguro, K. M., and Khanna, K. M. Modified Phenomenological Formula for the Ground State Energy of Light Nuclei. World Scientific News, 136 (2019) 148-158
  • [18] Mackie, F. D., and Baym, G. Compressible Liquid Drop Nuclear Model and Mass Formula, Nucl. Phys. A 285 (1977) 332
  • [19] Sharma, S. K. Atomic and Nuclear Physics. London: Dorling Kindersley. (2008).
  • [20] Royer, G., and Remaud, B. Fission Processes through Compact and Creviced Shapes. J. Phys. G: Nucl. Phys 26 (1984) 1149
  • [21] Royer, G. Alpha Emission and Spontaneous Fission through Quasi-molecular Shapes. J. Phys. G: Nucl. Phys. 10 (2000) 1057
  • [22] Michael, W. K. Mutual Influence of Terms in a Semi-empirical Mass Formula. Nucl. Phys. A, 798 (2008) 29-60
  • [23] Chelimo, L.S., Khanna, K.M., Sirma, K.K., Tonui, J.K., Korir, P.K., Kibet, J.K., Achieng, A.J., and Sarai, A. Nucleon-Nucleon Interaction in Infinite Nuclear Matter. International Journal of Physics and Mathematical Sciences, 5(1) (2015) 54-58
  • [24] Claudio, D., Jorge, A., and Pedro, A. G. Isoscaling and the Nuclear EOS. Journal of Physics G Nuclear and Particle Physics, 38(11) (2011).
  • [25] Sherill, B. M. Designer Atomic Nuclei. Science, 320 (5877) (2008) 751-752. Doi:10.1126/science.1151836
  • [26] Mirzaei, M. A. V., Mirhabibi, M., and Askari, M. B. Estimation of Semi-Empirical Mass Formula Coefficients. Nuclear Science, 2(1) (2017) 11-15
  • [27] Chen, I-Tso. The liquid Drop Model. Winter: Stanford University, (2011).
  • [28] Meng, W., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., and Xing, X. The Ame2016 Atomic Mass Evaluation. Chinese Physics C, 4 (3) (2017).
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f55bae13-2235-4160-9509-d45971dba618
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.