PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 36 | 1 | 5-71
Article title

Badanie ekspresji podtypów receptora somatostatynowego w ludzkich guzach endokrynnych

Authors
Content
Title variants
EN
Investigation of somatostatin receptor subtypes expression in human endocrine tumors
Languages of publication
PL
Abstracts
EN
Somatostatin (SST) – a hypothalamic polipeptide discovered in 70-ies of last century, is widely distributed in the central and peripheral nervous system, the pituitary gland and other tissues such as the pancreas, adrenals, intestine, kidneys, prostate, placenta and the cells of immune system. It exerts a number of different endo- and exocrine biological effects, predominantly of inhibitory nature. Somatostatin inhibits hormones secretion (GH, TSH, insulin, glucagon, gastrin, ghrelin, VIP). One of the most encouraging aspects of somatostatin effects, particularly in the context of tumor diseases therapy, is its antiproliferative action. It acts as both cytostatic (growth inhibition) as well as cytotoxic (apoptosis induction) agent. It inhibits also the angiogenesis process. Somatostatin as well as its synthetic analogs act via specific receptors which are present on the surface of the target cells. These receptors are glycoproteins and belong to a group of seven transmembrane domains linked with the G protein. Five subtypes of the SST receptor have been identified i.e. SSTR 1-5 with two splicing variants (2A and 2B) of the type 2 receptor. Recently, the new two variants of SSTR 5 (SSTR 5B and SSTR 5C) have been identified. The highly variable expression of SSTR subtypes in pituitary adenomas and neuroendocrine tumors of gastrointestinal tract, may partially explain why some tumors of this type do not respond to therapeutic action. This kind of therapy currently applies long-acting somatostatin analogs like octreotide or lanreotide which act mainly via SSTR 2 and SSTR 5 subtypes of somatostatin receptors. The studies describing the expression of somatostatin receptor subtypes in other endocrine tumors like thyroid and adrenal gland tumors are still rare and often confusing. They applied mainly to the molecular biology methods (mainly PCR). Immunohistochemical investigations are not numerous. Thus in my investigations I have taken a trial of immunohistochemical estimation of somatostatin receptor subtypes (including 2A and 2B SSTR isoforms) in surgically treated human adrenal tumors, thyroid tumors, pituitary adenomas and neuroendocrine tumors. In case of thyroid tumors, additionally molecular biology method was used (Real-Time PCR) to correlate the results obtained with both techniques. During my pituitary adenomas investigations, I could observed the distribution of somatostatin receptor subtypes in plurihormonal adenomas in order to answer the question if the immunopositivity of GH or ACTH is linked or not to more abundant expression of particular SSTR subtypes. For the first time, I could described this kind of correlation. The pattern of SSTR immunostaining in pituitary adenomas, estimated according to the frequency of appearance and expressed in percentage rate was made. Being based on the obtained results, I have drown the following conclusions: 1. The adrenal gland tumors, thyroid tumors, pituitary adenomas and neuroendocrine tumors exhibit the somatostatin receptor subtypes expression in a varied manner being specific in each case. There are variable levels both in different group of tumors as well as in the tumors of the same type. 2. In the adrenal gland tumors SSTR 5 is the dominant subtype of somatostatin receptor, SSTR 1 is expressed at the lower level. 3. Subtype SSTR 1 is the dominant form in the thyroid gland tumor and hyperplasia. 4. It was demonstrated the 100% of correlation between immunohistochemical - IHC and RT-PCR methods for SSTR 5. 5. The expression of all somatostatin receptor subtypes (SSTR 1-5) in pituitary adenomas depends on the hormonal phenotype of the tumor: • in somatotropinomas dominate two subtypes of receptor: SSTR 5 (88,8%) and SSTR 1 (77,8%), • in all prolactinomas SSTR 2B, SSTR 3 and SSTR 5 were found, gonadotroph adenomas demonstrated the low level of SSTR, with the strongest expression for SSTR 3 (27,3%) and SSTR 2B (22,7%), • in all of pituitary adenomas secreting ACTH – corticotropinomas, SSTR 2A was found and in 80% of cases the expression of SSTR 1 and SSTR 3 was detected, • the enhanced immunpositivity for SSTR 1 and SSTR 5 in plurihormonal pituitary adenomas was demonstrated for the first time; the expression of these somatostatin receptor subtypes does not depend on GH secretion by tumor’s cells. 6. In the neuroendocrine tumors the subtypes SSTR 1 (58,8%) and SSTR 5 (52,9%) are most often expressed, however the subtypes 3 and 2A were found in 41,2% and 33,3% of cases respectively. 7. SSTR 1-5 characterized membrane and cytoplasmic distribution in the cells of tumors. 8. The results presented in my studies confirm the high utility of immunohistochemical method to investigate the expression of somatostatin receptor subtypes.
PL
Somatostatyna (SST) - podwzgórzowy polipeptyd odkryty w latach 70-tych ubiegłego wieku, szeroko występuje w neuronach centralnego i obwodowego układu nerwowego, w przysadce, a takŜe w trzustce, nadnerczach, przewodzie pokarmowym, nerkach, prostacie, łoŜysku oraz w komórkach układu immunologicznego. Wywiera szereg róŜnorodnych efektów biologicznych: endo- i egzokrynnych, polegających głównie na hamowaniu sekrecji róŜnych hormonów (hormonu wzrostu -GH, tyreotropiny, insuliny, glukagonu, gastryny, ghreliny, VIP), a takŜe zmniejszeniu proliferacji komórkowej. To ostatnie działanie SST jest jednym z najbardziej interesujących efektów SST, zwłaszcza w aspekcie prób leczenia chorób nowotworowych. Somatostatyna działa zarówno cytostatyczne (hamowanie wzrostu), jak i cytotoksyczne (indukcja apoptozy), a takŜe hamuje angiogenezę. Somatostatyna, a takŜe jej długo działające syntetyczne analogi, wywierają swoje działanie za pośrednictwem specyficznych receptorów obecnych na powierzchni komórek docelowych. Mają one charakter glikoproteinowy i wiadomo, Ŝe naleŜą do grupy receptorów błonowych posiadających siedem obszarów transmembranowych i związanych z białkiem G. Zdefiniowano pięć podtypów receptora SST: SSTR 1-5. Podtyp SSTR 2 posiada dwie izoformy: 2A i 2B, a ostatnio zidentyfikowano takŜe dwa nowe warianty podtypu SSTR 5: SSTR 5B i SSTR 5C. Receptory somatostatynowe występują nie tylko w tkankach prawidłowych, lecz takŜe w guzach nowotworowych, co pozwala przewidzieć pozytywną odpowiedź na stosowanie analogów SST. DuŜa róŜnorodność ekspresji podtypów SSTR 1-5 w gruczolakach przysadki, a takŜe w guzach neuroendokrynnych przewodu pokarmowego moŜe częściowo wyjaśniać dlaczego w niektórych guzach tego typu, obserwuje się brak odpowiedzi na działanie analogów somatostatyny o przedłuŜonym działaniu, takich jak oktreotyd i lanreotyd, wiąŜących się głównie z podtypem receptora 2 i 5. Prace na temat występowania receptorów somatostatynowych w nowotworach innych gruczołów dokrewnych, takich jak nowotwory tarczycy i nadnerczy są nieliczne i prezentują sprzeczne wyniki. Badania te były jednak prowadzone głównie metodą łańcuchowej reakcji polimerazy (PCR), natomiast mniej badań przeprowadzono z uŜyciem metody immunohistochemicznej. Dlatego teŜ w swoich badaniach podjęłam próbę immunohistochemicznej oceny ekspresji podtypów receptora somatostatynowego SSTR 1-5 (z uwzględnieniem izoform SSTR 2A i 2B) w nowotworach tych narządów, a prezentowana praca jest podsumowaniem obserwacji własnych na tle dotychczasowego piśmiennictwa. W przypadku chorób tarczycy, równolegle wykonane zostały takŜe badania na poziomie molekularnym (RT-PCR) i przeprowadzono ocenę zgodności wyników uzyskanych tymi dwiema metodami. Omawiając występowanie SSTR w gruczolakach przysadki, po raz pierwszy dokonałam opisu dystrybucji SSTR w guzach wielohormonalnych tego gruczołu, odpowiadając na pytanie czy fakt współwystępowania GH lub ACTH w guzie ma związek ze zwiększoną ekspresją danego podtypu receptora. Na podstawie procentowej częstości występowania, określiłam wzory immunoekspresji SSTR 1-5 w gruczolakach przysadki. Otrzymane wyniki upowaŜniają do formułowania następujących wniosków: 1. Guzy nadnerczy, tarczycy, przysadki oraz guzy neuroendokrynne wykazują ekspresję podtypów receptora somatostatynowego SSTR 1-5 w sposób bardzo zróŜnicowany i specyficzny dla danego przypadku. Istnieją róŜnice w ekspresji SSTR 1-5 pomiędzy guzami róŜnych typów, jak równieŜ wśród guzów tego samego rodzaju. 2. W guzach nadnerczy dominuje SSTR 5, w mniejszym stopniu występuje SSTR 1. 3. Podtyp SSTR 1 receptora somatostatynowego jest dominującym podtypem w rakach i w łagodnych rozrostach gruczołu tarczowego. 4. Wykazano 100% zgodność pomiędzy metodą immunohistochemiczną - IHC i techniką RT-PCR dla SSTR 5. 5. Ekspresja podtypów receptora somatostatynowego w gruczolakach przysadki zaleŜy od fenotypu hormonalnego guza: • w guzach somatotropowych dominują dwa podtypy receptora: SSTR 5 (88,8%) i SSTR 1 (77,8%), • we wszystkich guzach prolaktynowych stwierdzono obecność SSTR 2B, SSTR 3 i SSTR 5, • w gruczolakach gonadotropowych stwierdzono niską ekspresję SSTR, wynoszącą maksymalnie dla SSTR 3 - 27,3%, a dla SSTR 2B - 22,7%, • we wszystkich gruczolakach przysadki wydzielających ACTHcorticotropinoma stwierdzono ekspresję SSTR 2A, a występowanie SSTR 1 i SSTR 3 w 80% przypadków. • po raz pierwszy wykazano w wielohormonalnych gruczolakach przysadki (adenoma plurihormonale) zwiększoną immunopozytywność SSTR 1 i SSTR 5, a ekspresja tych podtypów nie była związana z sekrecją hormonu wzrostu przez komórki guza, 6. W guzach neuroendokrynnych (NET) dominowały podtypy: SSTR 1 (58,8%) i SSTR 5 (52,9%), natomiast SSTR 3 stwierdzono w 41,2% a SSTR 2A w 33,3% przypadków. 7. SSTR 1-5 charakteryzują się błonową lub cytoplazmatyczną dystrybucją w komórce. 8. Przedstawione w pracy wyniki potwierdzają wysoką uŜyteczność immunohistochemicznej metody badania ekspresji receptorów somatostatynowych.
Keywords
Discipline
Publisher

Year
Volume
36
Issue
1
Pages
5-71
Physical description
Contributors
author
  • Zakład Neuroendokrynologii Uniwersytet Medyczny w Łodzi
References
  • Brazeau P, Vale W, Burgus R i wsp. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973; 179:77-79.
  • Pradayrol L, Jornvall H, Mutt V, Ribet A. N-terminally extended somatostatin: the primary structure of somatostatin-28. FEBB Lett 1980; 109:55-58.
  • Sevarino K, Felix R, Banks C i wsp. Cell-specific processing of prepro-somatostatin in cultured neuroendocrine cells. J Biol Chem 1987; 262:4987-4993.
  • Reichlin S. Somatostatin. N Engl J Med 1983a; 309:1495-1501.
  • Reichlin S. Somatostatin (second of two parts). N Engl J Med 1983b; 309:1556-1563.
  • Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999; 20:157-198.
  • Pawlikowski M, Kunert-Radek J, Stępień H. Somatostatin inhibits the mitogenic effect of thyroliberin. Experientia, 1978; 34:271-271.
  • Shally AV. Oncological applications of somatostatin analoques. Cancer Res 1988; 48:6977-6985.
  • Pawlikowski M, Kunert-Radek J, Stępień H. Somatostatin-an antiproliferative hormone. In Dohler KD, Pawlikowski M, eds. Progress in Neuropeptide Research, Basal, Switzerland, Birkhauser Verlag 1989; 3-12.
  • Lamberts SW, Krenning EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 1991; 12:450-482.
  • Arnold R, Trautmann ME, Creutzfweldt W. Somatostatin analoque octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut 1996; 38:430-438.
  • Pawlikowski M, Lachowicz L, Kunert-Radek J i wsp. Differential effects of somatostatin and its analog on protein tyrosine kinases activity in the rat pituitary and murine colonic tumors. Biochem Biophys Res Comm 1998; 246:375-377.
  • Guillemin R, Gerich JE. Somatostatin: Physiological and clinical significance. Annu Rev Med 1976; 27:379-388.
  • Kunert-Radek J, Stępień H, Radek A. Somatostatin suppression of meningioma cell proliferation in vitro. Acta Neurol Scan 1987; 75:434-436.
  • Sharma K, Patel YC, Srikant CB. Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. Mol Endocrinol 1996; 10:1688-1696.
  • Mełeń-Mucha G, Winczyk K, Pawlikowski M. Somatostatin analoque octreotide and melatonin inhibit bromodeoxyuridine incorporation into cell nuclei and enhance apoptosis in the transplantable murine colon 38 cancer. Anticancer Res 1998; 18:3615-3620.
  • de Herder WW, Lamberts SW. Somatostatin and somatostatin analogues: diagnostic and therapeutic uses. Curr Opin Oncol 2002; 14:53-57.
  • Voltering EA. Development of targeted somatostatin-based antiangiogenic therapy: A review and future perspectives. Cancer Biother Radiopharm 2003; 18:601-609.
  • Hu C, Yi C, Hao Z. The effect of somatostatin and SSTR 3 on proliferation and apoptosis of gastric cancer cells. Cancer Biol Ther 2004; 3:726-730.
  • Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med 1996; 334:246-254.
  • Pawlikowski M, Mełeń-Mucha G. Perspectives of new potential therapeutic applications of somatostatin analogs. Neuroendocrinol Lett 2003; 24:21-27.
  • Olias G, Viollet C, Kusserow H i wsp. Regulation and function of somatostatin receptors. J Neurochem 2004; 89:1057-1091.
  • Pawlikowski M, Mełeń-Mucha G. Somatostatin analogs – from new molecules to new applications. Curr Opin Pharmacol 2004; 4:608-613.
  • Srikant CB, Patel YC. Somatostatin receptors: Identification and characteri-zation in rat brain membranes. Proc Natl Acad Sci USA 1981; 78:3930-3934.
  • Patel YC, Murthy KK, Escher EE i wsp. Mechanism of action of somatostatin: An overview of receptor function and studies of the molecular characterization and purification of somatostatin receptor proteins. Metabolism 1990; 39, (Suppl 2):63-69.
  • Hoyer D, Bell GI, Berelowitz M i wsp. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 1995; 16:86-88.
  • Hipkin RW, Friedman J, Clark RB. Agonist-induced desensitization, inter-nalization and phosphorylation of the sst2a somatostatin receptor. J Biol Chem 1997; 272:13869-13876.
  • Law S, Manning D, Reisine T. Identification of the subunits of GTP binding proteins coupled to somatostatin receptors. J Biol Chem 1991; 266:17885-17897.
  • Reisine T, Bell G. Molecular biology of somatostatin receptors. Endocr Rev 1995; 16:427- 442.
  • Patel YC, Greenwood MT, Panetta R. The somatostatin receptor family. Life Sci 1995; 57: 1249-1265.
  • Patel Y.C. Molecular pharmacology of somatostatin receptors subtypes. J Endocrinol Invest 1997; 20:348-367.
  • de Herder WW, Hofland LJ, van der Lely AJ, Lamberts SW. Somastostatin receptors in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2003; 10:451-458.
  • Mełeń-Mucha G, Mucha S. Somatostatin receptors: distribution in normal tissues and transduction mechanisms. In: Somatostatin analogs in diagnostics and therapy. Edited by Marek Pawlikowski, Landes Bioscience 2007; 7-20.
  • Vanetti M, Kouba M, Wang X i wsp. Cloning and expression of a novel mouse somatostatin receptor (SSTR 2B). FEBS Lett 1992; 311:290-294.
  • Patel YC, Greenwood M, Kent G i wsp. Multiple genes transcripts of the somatostatin receptor SSTR 2: tissue selective distribution and cAMP regulation. Biochem Biophys Res Comm 1993; 192:288-294.
  • Hoyer D, Lubbert H, Bruns C. Molecular pharmacology of somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol 1994; 350:441-453.
  • Hofland LJ, Lamberts SWJ. The patholophysiological consequences of somato-statin receptor internalization and resistance. Endocr Rev 2003; 24:28-47.
  • Cordoba-Chacon J, Luque RM, Gahete MD i wsp. Identification and molecular characterization of new somatostatin receptor subtype 5 truncated isoforms in rodents. Endocr Abstracts 2008; 16:P463.
  • Hershberger RE, Newman BL, Florio T i wsp. The somatostatin receptors SSTR1 and SSTR2 are coupled to inhibition of adenylyl cyclase in Chinese hamster ovary cells via pertussis toxin-sensitive pathways. Endocrinology 1994; 134:1277-1285.
  • Gu YZ, Schonbrunn A. Coupling specifity between somatostatin receptor sst2A and G proteins: isolation of the receptor-G protein complex with a receptor antibody. Mol Endocrinol 1997; 11:527-537.
  • Fujii Y, Gonoi T, Yamada Y i wsp. Somatostatin receptor subtype SSTR2 mediates the inhibition of high-voltage-activated calcium channels by somato-statin and its analoque SMS 201-995. FEBS Lett 1994; 355:117-120.
  • Florio T, Thellung S, Schettini G. Intracellular transducing mechanisms coupled to brain somatostatin receptors. (Review), Pharmacol Res 1996; 33:297.
  • Buscail L, Delesque N, Esteve JP i wsp. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analoques: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci USA 1994; 91:2315-2319.
  • Florio T. Somatostatin/somatostatin receptor signaling: phosphotyrosine phos-phatases. Mol Cell Endocrinol 2008; 286:40-48.
  • Gao S, Yu BP, Dong WG, Luo HS. Antiproliferative effect of octreotide on gastric cancer cells mediated by inhibition of Akt/PKB and telomerase. World Gastroenterol 2003; 9:2362-2365.
  • Theodoropoulou M, Zhang J, Laupheimer S i wsp. Octreotide, a somatostatin analoque, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac 1 expression. Cancer Res 2006; 66:1576-1582.
  • Hofland LJ, Visser-Wisselaar HA, Lamberts SW. Somatostatin analogs: clinical application in relation to human somatostatin receptors subtypes. Biochem Pharmacol 1995; 50:287-297.
  • Lahlou H, Guillerment J, Hortala M i wsp. Molecular signaling of somatostain receptors. Ann NY Acad Sci 2004; 1014:121-131.
  • Srikant CB. Cell cycle dependent induction of apoptosis by somatostatin analog SMS 201-995 in AtT-20 mouse pituitary cells. Biochem Biophys Res Comm 1995; 2:400-406.
  • Sharma K, Srikant CB. Induction of wild-type p53, Bax and acidic endo-nuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer 1998; 76:259-266.
  • Szende B, Keri GY. TT232: a somatostatin structural derivative as a potent antitumor drug candidate. Anticancer Drugs 2003; 14:586-588.
  • Roth A, Kreienkamp HJ, Meyerhof W, Richter D. Phosphorylation of four amino acid residues in the carboksyl terminus of the rat somatostatin receptors subtype 3 is crucial for its desensitization and internalization. J Biol Chem 1997; 272:23769-23774.
  • Koenig JA, Kaur R, Dodgeon I i wsp. Fates of endocytosed somatostatin sst2 receptors and associated agonists. Biochem J 1998; 336:291-298.
  • Rocheville M, Lange DC, Kumar U i wsp. Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J Biol Chem 2000; 275:7862-7869.
  • Pfeiffer M, Koch T, Schröder H i wsp. Homo-and heterodimerization of somatostatin receptor subtypes. Inactivation of sst3 receptor function by heterodimerization with sst2A. J Biol Chem 2001; 276:14027-14036.
  • Grant M, Alturaihi H, Jaquet P i wsp. Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor hetero-dimeryzation. Mol Endocrinol 2008; 22:2278-2292.
  • Rocheville M, Lange DC, Kumar U i wsp. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000; 288:154-157.
  • Resmini E, Dadati P, Ravetti JL i wsp. Rapid pituitary tumor shrinkage with dissociation between anti-proliferative and anti-secretory effects of a long-acting octreotide in an acromegalic patient. J Clin Endocrinol Metab 2007; 92:1592-1599.
  • Pfeiffer M, Koch T, Schröder H, Laugsch M, Hölt V, Schulz S. Hetero-dimerization of somatostatin and opioid receptors cross-modulates phospho-rylation, internalization and desensitization. J Biol Chem 2002; 277:19762-19772.
  • Duran-Prado M, Malagon MM, Gracia-Navarro F, Castano JP. Dimerization of G-protein-coupled receptors: new avenues for somatostatin receptor signaling, control and fubctioning. Mol Cell Endocrinol 2008; 286:63-68.
  • Papotti M, Bongiovanni M, Volante M i wsp. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors: a correlative immunohistochemical and reverse-transcriptase polyme-rase chain reaction analysis. Virchows Arch 2002; 440:461-475.
  • Schulz S, Schmitt J, Weise W. Frequent expression of immunoreactive somato-statin receptors in cervical and endometrial cancer. Gynecol Oncol 2003; 89:385-390.
  • Kulaksiz H, Eissele R, Rossler D i wsp. Identification of somatostatin receptors subtypes 1, 2A, 3 and 5 in neuroendocrine tumours with subtype specific antibodies. Gut 2002; 50:52-60.
  • Nasir A, Stridsberg M, Strosberg J i wsp. Somatostatin receptor profiling in hepatic metastases from small intestinal and pancreatic neuroendocrine neoplasms: immunohistochemical approach with potential clinical utility. Cancer Control 2006; 13:52-60.
  • Pisarek H, Stępień T, Kubiak R, Pawlikowski M. Somatostatin receptors in human adrenal gland tumors - immunohistochemical study. Folia Histochem Cytobiol 2008; 46:251-257.
  • Pisarek H, Stępień T, Kubiak R i wsp. Expression of somatostatin receptor subtypes in human thyroid tumors: the immunohistochemical and molecular biology (RT-PCR) investigation. Thyroid Res 2009; 2:1.
  • Pawlikowski M. The incidence of somatostatin receptors in human neoplasms in the light of ex vivo-in vitro studies. Endocrinol Pol - Polish J Endocrinol 2006; 57:238-243.
  • Hofland LJ, Lamberts SWJ. Somatostatin receptor subtype expression in human tumors. Ann Oncol 2001; 12 (Suppl. 2):S31-S36.
  • Kvols L, Oberg K, de Herder W. Early data on the efficacy and safety of the novel multi-ligand somatostatin analog, SOM230, in patients with metastatic carcinoid tumors refractory or resistant to octreotide LAR. Proc Annu Meet Am Soc Clin Oncol 2005; Abstract 8024.
  • Pawlikowski M. Receptory somatostatynowe – nowe możliwości w diagnostyce i terapii. Endocrinol Pol - Polish J Endocrinol 2005; 56:4-5.
  • Krenning EP, Kwekkeboom DJ, Bakker WH i wsp. Somatostatin receptor scintigraphy with [111In- DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20:716-731.
  • McCarthy KE, Woltering EA, Anthony LB. In situ radiotherapy with 111In-pentetreotide: state of the art and perspectives. Q J Nucl Med 2000; 44:88-95.
  • Kamiński G, Szaluś N, Pietrzykowski J i wsp. Somatostatin receptor scinti-graphy with 99mTc-HYNIC-TATE and computed tomography in accurate visualisation of neuroendocrine tumours (NETS). Endocrinol Pol - Polish J Endocrinol 2005; 56:S11-14.
  • Reubi JC, Horisberger U, Laissue J. High density of somatostatin receptors in veins surrouding human cancer tissue: role in tumor-host interaction? Int J Cancer 1994; 56:681-688.
  • Schulz S, Schulz St, Schmitt J i wsp. Immunocytochemical detection of somatostatin receptors sst1, sst2A and sst3 in paraffin - embedded breast cancer tissue using subtype – specific antibodies. Clin Cancer Res 1998; 4:2047-2052.
  • Ferone D, Pivonello R, van Hagen M i wsp. Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes. Am J Physiol Endocrinol Metab 2002; 283:E1056-E1066.
  • de Sa SV, Correa-Giannella LM, Machado MC i wsp. Somatostatin receptor subtype 5 (SSTR5) mRNA expression is related to histopathological features of cell proliferation in insulinomas. Endocr Relat Cancer 2006; 13:69-78.
  • Mundschenk J, Unger N, Schulz S i wsp. Somatostatin receptor subtypes in human pheochromocytoma: subcellular expression pattern and functional relevance for octreotide scintigraphy. J Clin Endocrinol Metab 2003; 88:5150- 5157.
  • Unger N, Serdiuk I, Sheu SY i wsp. Immunohistochemical determination of somatostatin receptor subtypes 1, 2A, 3, 4 and 5 in various adrenal tumors. Endocr Res 2004; 30:931-934.
  • Unger N, Serdiuk I, Sheu SY i wsp. Immunohistochemical localization of somatostatin receptor subtypes in bening and malignant adrenal tumours. Clin Endocrinol 2008; 68:850-857.
  • Pasquali D, Conzo G, Rossi V i wsp. In vitro effect of som 230 on primary cultured pheochromocytoma cells. Endocr Abstracts 2006; 11:P551.
  • Ueberberg B, Tourne H, Redman A i wsp. Differencial expression of the human somatostatin receptor subtypes sst1 to sst5 in various adrenal tumors and normal adrenal gland. Horm Metab Res 2005; 37:722-728.
  • Epelbaum J, Bertherat J, Prevost G i wsp. Molecular and pharmacological characterization of somatostatin receptor subtypes in adrenal, extraadrenal, and malignant pheochromocytomas. J Clin Endocrinol Metab 1995; 80:1837- 1844.
  • Kimura N, Pilichowska M, Date F i wsp. Immunohistochemical expression of somatostatin type 2A receptor in neuroendocrine tumors. Clin Cancer Res 1999; 5:3483-3487.
  • Hofland J, Liu Q, van Koetsveld PM i wsp. Immunohistochemical detection of somatostatin receptor subtypes sst1 and sst2A in human somatostatin receptor positive tumors. J Clin Endocrinol Metab 1999; 84:775-780.
  • Reubi JC, Waser B, Liu Q i wsp. Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine system membranous versus intracellular location. J Clin Endocrinol Metab 2000; 85:3882-3891.
  • England RJA, Bedford KJ, Karsai L, Atkin SL. Somatostatin receptor expression in thyroid disease. Endocr Abstracts 2003; 5:P269.
  • Ain KB, Taylor KD, Tofiq S, Ventkataraman G. Somatostatin receptor subtype expression in human thyroid and thyroid carcinoma cell lines. J Clin Endocrinol Metab 1997; 82:1857-1862.
  • Forssell-Aronsson EB, Nilsson O, Benjegard SA i wsp. 1111n-DTPA-D-Phe1-Octreotide binding and somatostatin receptor subtypes in thyroid tumors. J Nucl Med 2000; 41:636-642.
  • Druckenthaner M, Schwarzer C, Ensinger C i wsp. Evidence for somatostatin receptor 2 in thyroid tissue. Regul Pept 2007; 138:32-39.
  • Schaer JC, Waser B, Mengod G, Reubi JC. Somatostatin receptor subtypes sstr1, sstr2, sstr3 and sstr5 expression in human pituitary, gastroentero-pancreatic and mammary tumors. Comparison of mRNA analysis with receptor autoradiography. Int J Cancer 1997; 70:530-537.
  • Nielsen S, Mellemkjaer S, Rasmussen LM i wsp. Expression of somatostain receptors on human pituitary adenomas in vivo and ex vivo. J Endocrinol Invest 2001; 24:430-437.
  • Pawlikowski M, Pisarek H, Kunert-Radek J, Radek A. Immunohistochemical detection of somatostatin receptor subtypes in „clinically nonfunctioning” pituitary adenomas. Endocr Pathol 2003; 14:231-238.
  • Hofland LJ, Lamberts WJ. Somatostatin receptors in pituitary function, diagnosis and therapy. In: Molecular pathology of the pituitary. Edited by Kontogeorgos G, Kovacs K. Front Horm Res. Basel, Karger 2004; 32:235-252.
  • Pawlikowski M. Somatostatin receptors in human tumors - in vitro studies. In: Somatostatin analogs in diagnostics and therapy. Edited by Marek Pawlikowski, Landes Bioscience 2007; 39-46.
  • Taboada GF, Luque RM, Bastos W i wsp. Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol 2007; 156:65-74.
  • Pawlikowski M, Pisarek H, Kunert-Radek J, Radek M. Somatostatin receptors in GH-secreting pituitary adenomas – their relationship to the response to octreotide. Endocrinol Pol - Polish J Endocrinol 2008; 59:196-199.
  • Florio T, Thellung S, Corsaro A i wsp. Characterization of the intracellular mechanisms mediating somatostatin and lanreotide inhibition of DNA synthesis and growth hormone release from dispersed human GH-secreting pituitary adenoma cells in vitro. Clin Endocrinol 2003; 59:115-128.
  • Matrone C, Pivonello R, Colao A i wsp. Expression and function of somato-statin receptor subtype 1 in human growth hormone secreting pituitary tumors deriving from patients partially responsive or resistant to long-term treatment with somatostain analogs. Neuroendocrinology 2004; 79:142-148.
  • Greenman Y, Melmed S. Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J Clin Endocrinol Metab 1994; 79:724-729.
  • Shimon I, Yan X, Taylor JE i wsp. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J Clin Invest 1997; 100:2386–2392.
  • Jaquet P, Ouafik L, Saveanu A i wsp. Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas. J Clin Endocrinol Metab 1999; 84:3268-3276.
  • Zatelli MC, Piccin D, Vignali C i wsp. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr Relat Cancer 2007; 14:91-102.
  • Ferone D, Gatto F, Arvigo M i wsp. The clinical-molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J Mol Endocrinol 2009; 42:361-370.
  • Van der Hoek J, Waaijers M, van Koetsveld PM i wsp. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am J Physiol Endocrinol Metab 2005; 289:E278-E287.
  • Nachtigall LB, Biller BMK. The potential role of the investigational somatostatin analog pasireotide (SOM230) in the treatment of neuroendocrine disorders. Curr Opin Endocrinol Diabetes 2006; 13:369-376.
  • Oberg K, Kvols L, Caplin M i wsp. Consensus report of the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroentero-pancreatic system. Ann Oncol 2004; 15:966-973.
  • Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradio-graphy with subtype-selective ligands. Eur J Nucl Med 2001; 28:836-846.
  • Schulz S, Schmitt J, Quednow C i wsp. Immunohistochemical detection of somatostatin receptors in human ovarian tumors. Gynecol Oncol 2002; 84:235–240.
  • Taniyama Y, Suzuki T, Mikami Y i wsp. Systemic distribution of somatatostatin receptor subtypes in human: an immunohistochemical study. Endocr J 2005; 52:605-611.
  • Pisarek H, Pawlikowski M, Kunert-Radek J, Radek M. Expression of somato-statin receptor subtypes in human pituitary adenomas – immunohistochemical studies. Endocrinol Pol - Polish J Endocrinol 2009; 4:240-251.
  • Jais P, Terris B, Ruszniewski P i wsp. Somatostatin receptor subtype gene expression in human endocrine gastroentero-pancreatic tumours. Eur J Clin Invest 1997; 27:639-644.
  • Reubi JC, Schaer JC, Waser B, Mengod G. Expression and localization of somatostatin receptor SSTR 1, SSTR 2 and SSTR 3 messenger RNAs in pituitary human tumors using in situ hybridization. Cancer Res 1994; 54:3455-3459.
  • Wulbrand U, Wied M, Zofel P i wsp. Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumors. Eur J Clin Invest 1998; 28:1038-1049.
  • Volante M, Brizzi MP, Faggiano A i wsp. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007; 20:1172–1182.
  • Faggiano A, Volante M, Brizzi MP i wsp. Somatostatin receptor immunohisto-chemistry in neuroendocrine tumors: a proposal of scoring system for clinical characterization and therapy selection. Endocr Abstracts 2007; 14:P168.
  • Schonbrunn A. Somatostatin receptors – present knowledge and future directions. Ann Oncol 1999; 10 (Suppl 2):S17-S21.
  • Pisarek H, Pawlikowski M, Kunert-Radek J, Winczyk K: Does the response of GH-secreting pituitary adenomas to octreotide depend on the cellular locali-zation of the somatostatin receptor subtypes SSTR 2 and SSTR 5? Endocrinol Pol - Polish J Endocrinol – w druku, nr manuskryptu: EP-2009-412.
Document Type
paper
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f480e097-5bbb-4abe-95ed-9836e5a5292d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.