Preferences help
enabled [disable] Abstract
Number of results
2018 | 95 | 52-63
Article title

On the Nitinol properties improvement after electrochemical treatments

Title variants
Languages of publication
Shape Memory Alloys (SMAs) are a group of intermetallic compounds, which can undergo deformation at one temperature, and then recover their original undeformed shape upon heating above their transformation temperature. Superelasticity occurs just above the alloy’s transformation temperature in a very narrow range. In this case no heating is necessary to cause the deformed shape to recover upon load relieve to its original undeformed shape. It has to be emphasized that nitinol exhibits enormous elasticity when compared with other medical metal alloys. In recent years, the use of nitinol (NiTi), almost equiatomic binary (50:50 ratio) intermetallic compound of nickel and titanium, has been steadily growing, particularly in medical and dental devices markets. However, broader and further application of nitinol has been slowed down by leaking nickel and unavoidable inclusions during producing in this compound. This work is to present some electrochemical treatment methods in view of reducing of both these phenomena. It appears that changing electrical conditions of electropolishing (EP) above the plateau region (EP+) may improve the quality of surface obtained on NiTi of over 60% in comparison with as-received (AR) nitinol part. What’s more, introducing a magnetic field into the electrolysis system results in numerous positive features of nitinol surface and increase of mechanical properties. Thus the magnetoelectropolishing (MEP) process appears to increase higher the fatigue resistance of the treated NiTi part. The experiments carried out on chirurgical needles show an unusual triple (and higher) growth in resistance to bending until fracture. Further increase in fatigue resistance is usually limited by different size inclusions appearing on the nitinol part surface under magnetoelectropolishing (MEP).
Physical description
  • Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland
  • Electrobright, Macungie PA, USA
  • [1] D. Kapoor, Johnson Matthey Technol. Rev., 61(1) (2017) 66; doi:10.1595/205651317x694524
  • [2] ASTM F 86. (2009) Standard Practice for Surface Preparation and Marking of Metallic Surgical Implants. Annual Book of Standards, ASTM, 2009.
  • [3] Toro, F. Zhou, M.H. Wu, W. Van Geertruyden, W.Z. Misiołek, Characterization of non-metallic inclusions in superelastic NiTi tubes. Journals of Materials Engineering and Performance 18 (2009) 448-458.
  • [4] W. Haider, Enhanced Biocompatibility of NiTi (Nitinol) Via Surface Treatment and Alloying. FIU Electronic Theses and Dissertations, 2010, Paper 17
  • [5] S.A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Biomed. Mater. Eng. 12(1) (2002) 69-109.
  • [6] S.A. Shabalovskaya, J. Anderegg, F. Laabs, P. Thiel, G. Rondelli, Surface conditions of Nitinol wires, tubing, and as-cast alloys: the effect of chemical etching, aging in boiling water and heat treatment. J. Biomed. Mater. Res. 65B (2003) 193-203.
  • [7] S.A. Shabalovskaya, J. Anderegg, G. Rondelli, W. Vanderlinden, S. De Feyter, Comparative in vitro performance of bare nitinol surfaces. Bio-Medical Materials and Engineering 18(1) (2007) 1-14.
  • [8] S.A. Shabalovskaya, J. Anderegg, J. Van Humbeeck, Recent observation of particulates in nitinol. Materials Science and Engineering A 481-482 (2008) 431-436.
  • [9] S.A. Shabalovskaya, G. Rondelli, M. Rettenmayer, Nitinol surface for implantation. Journal of Materials Engineering and Performance 18(5-6) (2009) 470-474.
  • [10] K. Amplatz, Nonsurgical placement of arterial endoprostheses: a new technique using nitinol wire. Radiology 147(4) (1983) 261-263.
  • [11] R. Venugopalan, C. Trepanier, Assesing the corrosion behavior of nitinol for minimally-invasive device design. Min. Invas. Ther. & Allied Technol. 9(2) (2000) 67-74.
  • [12] W. Wu, X. Liu, H. Han, D. Yang, S. Lu, Electropolishing of NiTi for improving biocompatibility. J. Mater. Sci. Technol. 24(6) (2008) 926-930.
  • [13] E. Denkhaus, K. Salnikow, Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology; 42(1) (2002) 35-56.
  • [14] T. Hryniewicz, K. Rokosz, R. Rokicki, Surface investigation of NiTi rotary endodontic instruments after magnetoelectropolishing. Mater. Res. Soc. Symp. Proc. Vol. 1244 © 2009 Materials Research Society, pp. 21-32, Symposium 9. Biomaterials (of XVIII International Materials Research Congress), Cancun, Mexico 2009.
  • [15] R. Rokicki, W. Haider, T. Hryniewicz, Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells. J. Mater. Sci.: Mater. Med. 23(9) (2012) 2127-2139.
  • [16] R. Rokicki, T. Hryniewicz., C. Pulletikurthi., K. Rokosz., N. Munroe, Toward better corrosion resistance and biocompatibility improvement of nitinol medical devices. Journal of Materials Engineering and Performance 24 (4) (2015)1634-1640
  • [17] T. Karjalainen, H. Göransson, A. Viinikainen, T. Jämsä & Ryhänen, Nickel-titanium wire as a flexor tendon suture material: an ex vivo study. The Journal of Hand. Surg. European 35(6) (2010) 469- 474.
  • [18] A.R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M.R. Launey, M.R. Mitchell, Rotary-bending fatigue characteristics of medical-grade nitinol wire. Journal of the Mechanical Behavior of Biomedical Materials 27 (2013) 19-32.
  • [19] Pulletikurthi., N. Munroe, D. Stewart, W. Haider, S. Amruthaluri, R. Rokicki, M. Durgot, S. Ramaswamy, Utility of magneto-electropolished ternary nitinol alloy for blood contacting application. Journal of Biomedical Materials Research, Part B, Applied Biomaterials 103 (7) (2015) 1366-1374
  • [20] R. Rokicki, T. Hryniewicz, K. Rokosz, Modifying metallic implants with magnetoelectropolishing. Medical Device & Diagnostic Industry. 30(1) (2008) 102-111.
  • [21] Zhang, Z. Zhang, Z. Zi, Y. Zhang, W. Zeng, P.K. Chu, Fabrication of graded TiN coatings on nitinol occluders and effects on in vivo nickel release, Bio-Medical Materials and Engineering, 18(6) (2008) 387-393. DOI: 10.3233/BME-2008-0555.
  • [22] Sigel, H. Sigel, R.K.O. Sigel, Nickel and its surprising impact in nature. John Wiley & Sons, Science, 2007, 702 pages.
  • [23] L. Neelakantan, M. Valtiner, G. Eggeler, A.S.W. Hassel, Surface chemistry and topographical changes of an electropolished TiNi shape memory alloy. Phys. Status Solidi A 207(4) (2010) 807-811.
  • [24] R. Rokicki, Chemical test for detecting nitinol inclusions You Tube (2009)
  • [25] R. Rokicki, Detecting nitinol surface inclusions. Medical Device & Diagnostic Industry 32(2) (2010) 44-48.
  • [26] R. Rokicki, Patent application number: 20120093944 “Method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation, sterilization of electropolished and magnetoelectropolished nitinol surfaces”. 2012,
  • [27] R. Rokicki, Method for surface inclusion detection in nitinol which are primary corrosion and fatigue initiation sites and indicators of overall quality of nitinol materials. US Patent Number 8, 377, 237 B2, 2010.
  • [28] R. Rokicki, Method for surface inclusions detection in nitinol which are primary corrosion and fatigue initiation sites and indicators of overall quality of nitinol material. US Patent 8377237, February 19, 2013
  • [29] R. Rokicki, Method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation, sterilization of electropolished and magnetoelectropolished nitinol surfaces. US Patent 9017489, April 28, 2015
  • [30] W. Simka, M. Kaczmarek, A. Baron-Wiechec, G. Nawrat, J. Marciniak, J. Żak, Electropolishing and passivation of NiTi shape memory alloy. Electrochimica Acta 55(7) (2010) 2437-2441.
  • [31] L.G. Machado & M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36 (2003) 683-691.
  • [32] Heβing, J. Frenzel, M. Pohl, S. Shabolovskaya, Effect of martensitic transformation on the performance of coated NiTi surfaces. Mater. Sci. & Eng. A 486 (2008) 461-469.
  • [33] W. Nicholson, W.J. Nicholson, P. Tolerico, B. Taylor, S. Solomon, T. Schryver, K. McCullum, H. Goldberg, J. Mills, B. Schuler, L. Shears, L. Siddoway, N. Agarwal, C. Tuohy, Prevalence of fracture and fragment embolization of Bard retrievable vena cava filters and clinical implications including cardiac perforation and tamponade. Arch. Intern. Med. 170(20) (2010) 1827-31.
  • [34] Nikanorov, H.B. Smouse, K. Osman, M. Bialas, S. Shrivastava, L. Schwartz, Fracture of self- expanding nitinol stents stressed in vitro under simulated intravascular conditions. Journal of Surgery 48(2) (2008) 435-440.
  • [35] S. Shabalovskaya, J. Anderegg, J. Wataha, P. Adler, J. Cunnick, Effects of Nitinol surface treatments and ethylene oxide sterilization on Human Lymphocyte Proliferation. Journal Materials Research,
  • [36] G. Rondelli, B. Vicentini, Evaluation by electrochemical tests of passive film stability of equiatomic Ni-i alloy also in the presence of stress induced martensite. J. Biomed. Mater. Res. 51 (2000) 47-54.
  • [37] T. Hryniewicz, K. Rokosz, R. Rokicki, Magnetoelectropolishing process improves characteristic of finished metal surface. Metal Finishing 12 (2006) 26-33.
  • [38] T. Hryniewicz, R. Rokicki, K. Rokosz, Magnetoelectropolishing for metal surface modification. Transactions of the Institute of Metal Finishing 85(6) (2007) 325-332.
  • [39] R. Rokicki, T. Hryniewicz, Nitinol surface finishing by magnetoelectropolishing. Transactions of the Institute of Metal Finishing 86(5) (2008) 280-285.
  • [40] R. Rokicki, Apparatus and method for enhancing electropolishing utilizing magnetic fields. US Patent Number 7632390, 2009.
  • [41] C. Praisarnti, J. Chang, G. Cheung, Electropolishing enhances the resistance of nickel-titanium files to corrosion-fatigue failure in hypochlorite. J. Endodontics, 36(8) (2010) 1354-1358.
  • [42] R. Rokicki, T. Hryniewicz, Enhanced oxidation-dissolution theory of electropolishing. Transaction of the Institute of Metal Finishing 90(4) (2012) 188-196.
  • [43] E.J. Taylor, M. Inman, T. Hall, B. Kagaywala, A. Lozano-Morales, Electropolishing of nitinol in HF-free aqueous electrolytes. 221st ECS Meeting, 2012 Abstract 989 The Electrochemical Society,
  • [44] T.Z. Fahidy, Magnetoelectrolysis. Journal of Applied Electrochemistry 13 (1983) 553-563.
  • [45] T. Hryniewicz, K. Rokosz, R. Rokicki, Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in magnetic field. Corrosion Science 50 (2008) 2676-2681.
  • [46] T. Hryniewicz, K. Rokosz, Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS using linear, Shirley and Taugaard methods of background substraction. Advances in Materials Sciences 13(1) (2013) 11-20.
  • [47] Krause, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic field on electrodeposition of cobalt. Electrochimica Acta 49(24) (2004) 4127-4134.
  • [48] Z.C. Lin, A. Denison, Nitinol fatigue resistance – a strong function of surface quality. Medical Device Materials: Proceeding of the Materials & Processes for Medical Devices Conference 2004, pp. 205-208.
  • [49] S.W. Robertson, A.R. Pelton, R.O. Ritchie, Mechanical fatigue and fracture of nitinol. International Materials Reviews 57(1) (2012) 1-36.
  • [50] R. Rokicki, When changing one word can save a life: Bare instead of eluting. 2006
  • [51] V. Schroeder, Evolution of the passive film on mechanically damaged Nitinol. Journal of Biomedical Materials Research Part A 90A(1) (2009) 1-17.
  • [52] R.A. Tacken, L.J.J. Janssen, Application of magnetoelectrolysis. Journal of Applied Electrochemistry 25 (1995) 1-5.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.