PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 108 | 237-244
Article title

Lanczos potential for the Weyl tensor

Content
Title variants
Languages of publication
EN
Abstracts
EN
For arbitrary spacetimes with Petrov types O, N and III, we indicate general results about the Lanczos potential for the corresponding Weyl tensor.
Year
Volume
108
Pages
237-244
Physical description
Contributors
author
  • CBI-Área de Física Atómica Molecular Aplicada, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP 02200, CDMX, México
author
  • CBI-Área de Física Atómica Molecular Aplicada, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP 02200, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Lindavista 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Lindavista 07738, CDMX, México
References
  • [1] A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, G. R. Pérez-Teruel, Faraday tensor and Maxwell spinor, Prespacetime Journal 6(2) (2015) 88-107.
  • [2] J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Maxwell, Lanczos, and Weyl spinors, Prespacetime Journal 6(6) (2015) 509-520.
  • [3] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, A. K. Rathie, Newman-Penrose equations, Bianchi identities and Weyl-Lanczos relations, Prespacetime Journal 6(8) (2015) 684-696.
  • [4] J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Spin coefficients formalism, Prespacetime Journal 6(8) (2015) 697-709.
  • [5] B. Man Tuladhar, J. López-Bonilla, Spinor representation of the electromagnetic field, World Scientific News 95 (2018) 1-20.
  • [6] P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Newman-Penrose’s formalism, World Scientific News 96 (2018) 1-12.
  • [7] C. Lanczos, The splitting of the Riemann tensor, Rev. Mod. Phys. 34(3) (1962) 379-389.
  • [8] C. Lanczos, The Riemannian tensor in four dimensions, Annales de la Faculté des Sciences de Universite de Clermont-Ferrand 8 (1962) 167-170.
  • [9] G. Ares de Parga, O. Chavoya, J. López-Bonilla, Lanczos potential, J. Math. Phys. 30(6) (1989) 1294-1295.
  • [10] B. Gellai, Cornelius Lanczos, in ‘Physicists of Ireland’ (Eds.) M. McCartney, A. Whitaker; Inst. of Phys. Pub., Bristol & Philadelphia (2003) 198-207.
  • [11] Z. Perjés, The works of Kornél Lánczos on the theory of relativity, in ‘A panorama of Hungarian mathematics in the twentieh century. I’, J. Horváth (Editor); Springer-Verlag, Berlin (2006).
  • [12] P. O’Donnell, H. Pye, A brief historical review of the important developments in Lanczos potential theory, EJTP 7(24) (2010) 327-350.
  • [13] M. Carmeli, Classical fields: general relativity and gauge theory, John Wiley, New York (1982).
  • [14] S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press (1983).
  • [15] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein’s field equations, Cambridge University Press (2003).
  • [16] E. Newman, R. Penrose, Spin-coefficients formalism, Scholarpedia 4(6) (2009) 7445.
  • [17] J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Some applications of the Newman-Penrose formalism, Prespacetime Journal 7(9) (2016) 1259-1266.
  • [18] R. A. Harris, J. D. Zund, An algorithm for the Bel-Petrov classification of gravitational fields, Comm. Assoc. Comp. Machinery 21 (1978) 715-717.
  • [19] J. Plebañski, A. Krasiñski, An introduction to general relativity and cosmology, Cambridge University Press (2006).
  • [20] M. Acevedo, M. Enciso, J. López-Bonilla, Petrov classification of the conformal tensor, EJTP 3(9) (2006) 79-82.
  • [21] J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Petrov types and their canonical tetrads, Prespacetime Journal 7(8) (2016) 1176-1186.
  • [22] P. J. Greenberg, The algebra of the Riemann curvature tensor in general relativity, Stud. Appl. Maths. 51(3) (1972) 277-308.
  • [23] W. F. Maher, J. D. Zund, A spinor approach to the Lanczos spintensor, Nuovo Cimento A 57(4) (1968) 638-648.
  • [24] J. D. Zund, Sur le spineur de Lanczos en relativité générale, Comptes Rendus Acad. Sci. (Paris) A276 (1973) 1629-1631.
  • [25] J. D. Zund, The theory of the Lanczos spinor, Ann. di Mat. Pura ed Appl. 109(1) (1975) 239-268.
  • [26] A. H. Taub, Lanczos splitting of the Riemann tensor, Comp. Maths. Appl. 1(3-4) (1975) 377-380.
  • [27] R. Illge, On potentials for several classes of spinor and tensor fields, Gen. Rel. Grav. 20(6) (1988) 551-564.
  • [28] F. Andersson, S. B. Edgar, Spin coefficients as Lanczos scalars: Underlying spinor relations, J. Math. Phys. 41(5) (2000) 2990-3001.
  • [29] P. O’Donnell, Introduction to 2-spinors in general relativity, World Scientific, Singapore (2003).
  • [30] G. F. Torres del Castillo, Spinors in four-dimensional spaces, Birkhäuser, Boston (2010).
  • [31] B. E. Carvajal-Gámez, M. Galaz-Larios, J. López-Bonilla, On the Lorentz matrix in terms of Infeld-van der Waerden symbols, Scientia Magna 3(3) (2007) 82-84.
  • [32] Ch. G. van Weert, Direct method for calculating the bound four-momentum of a classical charge, Phys. Rev. D 9(2) (1974) 339-341.
  • [33] J. López-Bonilla, G. Ovando, J. Rivera, On the physical meaning of the Weert potential, Nuovo Cim. B 112(10) (1997) 1433-1436.
  • [34] J. H. Caltenco, J. López-Bonilla, L. Ioan-Piscoran, Motion of charged particles in Minkowski spacetime, World Scientific News 108 (2018) 18-40.
  • [35] J. López-Bonilla, R. López-Vázquez, H. Torres, Petrov classification of the Liénard-Wiechert field, Int. Frontier Sci. Lett. 1(2) (2014) 16-18.
  • [36] V. Gaftoi, J. López-Bonilla, G. Ovando, Lanczos potential for a rotating black hole, Nuovo Cim. B 113(12) (1998) 1493-1496.
  • [37] J. López-Bonilla, J. Morales, G. Ovando, A potential for the Lanczos spintensor in Kerr geometry, Gen. Rel. Grav. 31(3) (1999) 413-415.
  • [38] J. H. Caltenco, J. López-Bonilla, J. Morales, G. Ovando, Lanczos potential for the Kerr metric, Chinese J. Phys. 39(5) (2001) 397-400.
  • [39] J. López-Bonilla, J. Morales, G. Ovando, Kerr geometry and its Lanczos spintensor, New Advances in Physics 8(2) (2014) 107-110.
  • [40] J. López-Bonilla, J. Morales, G. Ovando, Wave equation and Lanczos potential, Prespacetime Journal 6(4) (2015) 269-272.
  • [41] J. López-Bonilla, L. Ioan-Piscoran, G. Pérez, Rotating black hole and a potential for its Weyl tensor, Global J. Adv. Res. Class. Mod. Geom. 4(1) (2015) 62-64.
  • [42] J. López-Bonilla, G. Ovando, Lanczos spintensor for the Gödel metric, Gen. Rel. Grav. 31(7) (1999) 1071-1074.
  • [43] V. Gaftoi, J. López-Bonilla, G. Ovando, Lanczos potential for the Gödel cosmological model, Czech. J. Phys. 52(6) (2002) 811-813.
  • [44] Z. Ahsan, J. H. Caltenco, R. Linares, J. López-Bonilla, Lanczos generator in Gödel geometry, Comm. in Phys. 20(1) (2010) 9-14.
  • [45] J. López-Bonilla, G. Ovando, J. Peña, A Lanczos potential for plane gravitational waves, Found. Phys. Lett. 12(4) (1999) 401-405.
  • [46] J. López-Bonilla, J. Morales, D. Navarrete, Lanczos spintensor for empty type D spacetimes, Class. Quantum Grav. 10(10) (1993) 2153-2156.
  • [47] I. Guerrero-Moreno, J. López-Bonilla, A. Rangel-Merino, Lanczos spintensor for several spacetimes, The Icfai Univ. J. Phys. 2(1) (2009) 7-17.
  • [48] J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Kinnersley’s metrics, Prespacetime Journal 7(9) (2016) 1267-1274.
  • [49] A. H. Hasmani, R. Panchal, Lanczos potential for some non-vacuum spacetimes, Eur. Phys. J. Plus 131(9) (2016) 336-341.
  • [50] A. H. Hasmani, A. C. Patel, R. Panchal, Lanczos potential for Weyl metric, Prajña 24-25 (2017) 11-14.
  • [51] F. Andersson, S. B. Edgar, Existence of Lanczos potentials and superpotentials for the Weyl spinor / tensor, Class. Quantum Grav. 18(12) (2001) 2297-2304.
  • [52] F. Andersson, S. B. Edgar, Local existence of symmetric spinor potentials for symmetric (3, 1) – spinors in Einstein space-times, J. Geom. Phys. 37(4) (2001) 273-290.
  • [53] J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Lanczos spinor for the type D empty spacetimes, Prespacetime Journal 7(13) (2016) 1729-1731.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-f3ce9b14-283d-41fc-b86d-9978e26fe425
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.