Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 25 | 1 | 23-33

Article title

Effects of Multipath and Conventional NMES on Maximum Comfortable Stimulus and Torque Production

Content

Title variants

Languages of publication

EN

Abstracts

EN
A novel multipath NMES (m-NMES) device has shown improved outcomes relative to conventional NMES (c-NMES) during recent basic and training studies. However, the mechanisms by which m-NMES outperformed c-NMES remain unclear. This study aimed to better understand these mechanisms by comparing the effects of m-NMES and c-NMES on maximum comfortable stimulus intensity and the subsequent NMES-induced torque, as these variables ultimately impact NMES training intensity; which is considered to be the primary determinant of NMES effectiveness. We measured maximum comfortable stimulus intensity and the subsequent NMES-induced torque while participants performed NMES-induced contractions under two conditions (m-NMES and c-NMES). Maximum comfortable stimulus intensity was significantly greater under the m-NMES condition, but the subsequent NMES-induced torque was not significantly different across conditions. m-NMES does not appear to influence the outcomes in a clinically meaningful manner, since it performed similarly to c-NMES with respect to peak NMES-induced torque.

Keywords

EN

Contributors

  • Department of Kinesiology & Outdoor Recreation,Southern Utah University, USA
  • College of Health Professions, Mercer University, USA

References

  • 1. Adams, G.R., Harris, R.T., Woodard, D., Dudley, G.A. (1993). Mapping of electrical muscle stimulation using MRI. Journal of applied physiology, 74 (2), 532–537.
  • 2. Alon, G., Smith, G.V. (2005). Tolerance and conditioning to neuro-muscular electrical stimulation within and between sessions and gender. J Sports Sci Med, 4 (4), 395–405.
  • 3. Asakawa, Y., Jung, J., Koh, S. (2014). Neuromuscular electrical stimulation improves strength, pain and weight distribution on patients with knee instability post surgery. Physical Therapy Rehabilitation Science, 3 (2), 112–118. DOI: 10.14474/ptrs.2014.3.2.112.
  • 4. Bremner, C.B., Holcomb, W.R. (in-press). A Comparison of Multipath and Conventional Neuromuscular Electrical Stimulation. Athletic Training & Sports Health Care.
  • 5. Bremner, C.B., Holcomb, W.R., Brown, C.D. (2015). Knee Joint Angle Influences Neuromuscular Electrical Stimulation-Induced Torque. Athletic Training & Sports Health Care, 7 (4), 165–172. DOI: 10.3928/19425864-20150707-07.
  • 6. Bruce-Brand, R.A., Walls, R.J., Ong, J.C., Emerson, B.S., O’Byrne, J.M., Moyna, N.M. (2012). Effects of home-based resistance training and neuromuscular electrical stimulation in knee osteoarthritis: a randomized controlled trial. BMC musculoskeletal disorders, 13 (118), 1–10.
  • 7. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, N.J.: Lawrence Erlbaum Associates.
  • 8. Coote, S., Hughes, L., Rainsford, G., Minogue, C., Donnelly, A. (2015). Pilot randomized trial of progressive resistance exercise augmented by neuromuscular electrical stimulation for people with multiple sclerosis who use walking aids. Arch Phys Med Rehabil, 96 (2), 197–204. DOI: 10.1016/j.apmr.2014.09.021.
  • 9. Cumming, G. (2012). Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-analysis. New York, NY: Routledge.
  • 10. Dantas, L.O., Vieira, A., Siqueira, A.L., Jr., Salvini, T.F., Durigan, J.L. (2015). Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. Muscle Nerve, 51 (1), 76–82. DOI: 10.1002/mus.24280.
  • 11. Doucet, B.M., Lam, A., Griffin, L. (2012). Neuromuscular Electrical Stimulation for Skeletal Muscle Funciton. Yale Journal of Biology and Medicine, 85 (2), 201–215.
  • 12. Faul, F., Erdfelder, E., Lang, A.G., Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39 (2), 175–191.
  • 13. Feil, S., Newell, J., Minogue, C., Paessler, H.H. (2011). The effectiveness of supplementing a standard rehabilitation program with superimposed neuromuscular electrical stimulation after anterior cruciate ligament reconstruction: a prospective, randomized, single-blind study. Am J Sports Med, 39 (6), 1238–1247. DOI: 10.1177/0363546510396180.
  • 14. Gobbo, M., Maffiuletti, N.A., Orizio, C., Minetto, M.A. (2014). Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. Journal of Neuroengineering and Rehabilitation, 11 (17), 1–6. DOI: 10.1186/1743-0003-11-17.
  • 15. Gondin, J., Cozzone, P.J., Bendahan, D. (2011). Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur J Appl Physiol, 111 (10), 2473–2487. DOI: 10.1007/ s00421-011-2101-2.
  • 16. Gorgey, A.S., Dudley, G.A. (2008). The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. J Orthop Sports Phys Ther, 38 (8), 508–516. DOI: 10.2519/jospt.2008.2734.
  • 17. Gorgey, A.S., Mahoney, E., Kendall, T., Dudley, G.A. (2006). Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol, 97 (6), 737–744. DOI: 10.1007/s00421-006-0232-7.
  • 18. Holcomb, W.R. (1997). A practical guide to electrical therapy. Journal of Sport Rehabilitation, 6 (3), 272–282.
  • 19. Holcomb, W.R., Golestani, S., Hill, S. (2000). A comparison of knee-extension torque production with biphasic versus russian current. Journal of Sport Rehabilitation, 9, 229–239.
  • 20. Holcomb, W.R., Rubley, M.D., Girouard, T.J. (2007). Effect of the Simultaneous Application of NMES and HVPC on Knee Extension Torque. Journal of Sport Rehabilitation, 16, 307–318.
  • 21. Holcomb, W.R., Rubley, M.D., Miller, M.G., Girouard, T.J. (2006). The effect of rest intervals on knee-extension torque production with neuromuscular electrical stimulation. Journal of Sport Rehabilitation, 15 (2), 116–124.
  • 22. Holcomb, W.R., Rubley, M.D., Randolph, S.M. (2011). Increasing Neuromuscular Electrical Stimulation Amplitude to Reduce the Decline in Knee Extension Torque. Athletic Training & Sports Health Care, 3 (2), 63–68.
  • 23. Hooker, D.N. (2003). Electrical Stimulating Currents. In: W.E. Prentice (ed.), Therapeutic Modalities for Sports Medicine and Athletic Training (5th ed., pp. 191–239). New York, NY: McGraw-Hill.
  • 24. Lake, D.A. (1992). Neuromuscular electrical stimulation: an overview and its application in the treatment of sports injuries. Sports medicine, 13 (5), 320–336.
  • 25. Laufer, Y., Elboim, M. (2008). Effect of burst frequency and duration of kilohertz-frequency alternating currents and of low-frequency pulsed currents on strength of contraciton, muscle fatigue, and percieved discomfort. Physical Therapy, 88 (10), 1167–1176.
  • 26. Maffiuletti, N.A. (2010). Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol, 110(2), 223-234. doi: 10.1007/s00421-010-1502-y
  • 27. Maffiuletti, N.A., Minetto, M.A., Farina, D., Bottinelli, R. (2011). Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur J Appl Physiol, 111 (10), 2391–2397. DOI: 10.1007/s00421-011-2133-7.
  • 28. Maffiuletti, N.A., Morelli, A., Martin, A., Duclay, J., Billot, M., Jubeau, M., ..., Sartorio, A. (2011). Effect of gender and obesity on electrical current thresholds. Muscle & Nerve, 44 (2), 202–207.
  • 29. Maffiuletti, N.A., Vivodtzev, I., Minetto, M.A., Place, N. (2014). A new paradigm of neuromuscular electrical stimulation for the quadriceps femoris muscle. Eur J Appl Physiol, 114 (6), 1197–1205. DOI: 10.1007/s00421-014-2849-2.
  • 30. Morf, C., Wellauer, V., Casartelli, N.C., Maffiuletti, N.A. (2015). Acute effects of multipath electrical stimulation in patients with total knee arthroplasty. Arch Phys Med Rehabil, 96 (3), 498–504. DOI: 10.1016/j.apmr.2014.10.011.
  • 31. Neurotech® (2012a). Kneehab® XP Quadriceps Therapy System. Hoboken, NJ: Bio-medical research Ltd.
  • 32. Neurotech® (2012b). Quick start guide for clinicians. Hoboken, NJ: Biomedical Research Ltd.
  • 33. Paessler, H.H. (2012). Emerging Techniques in Orthopedics: Advances in Neuromuscular Electrical Stimulation. American Journal of Orthopedics, 41 (5 Suppl.), 1–8.
  • 34. Teepker, M., Peters, M., Vedder, H., Schepelmann, K., Lautenbacher, S. (2010). Menstrual variation in experimental pain: correlation with gonadal hormones. Neuropsychobiology, 61 (3), 131–140.
  • 35. Walls, R.J., McHugh, G., O’Gorman, D.J., Moyna, N.M., O’Byrne, J.M. (2010). Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study. BMC Musculoskelet Disord, 11 (119), 1–9. DOI: 10.1186/1471-2474-11-119.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f39cc0c2-a658-43bf-a15f-6abf8251f5ce
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.