Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 7 | 7-23

Article title

NITROGEN OXIDES REMOVAL BY SCR PROCESS – STATE OF THE ART

Content

Title variants

Languages of publication

EN PL

Abstracts

EN
W pracy omówiono źródła powstawania tlenków azotu, wpływ NOx na środowisko i życie człowieka, jak również katalityczne reakcje ich usuwania. W szczególności omówiono technologię procesu selektywnej katalitycznej redukcji NO amoniakiem (proces NH3-SCR), w tym stosowane w procesie komercyjne katalizatory oparte na tlenku tytanu oraz mieszane tlenki pochodzenia hydrotalkitowego. Uzyskane wyniki jednoznacznie wskazują na duży potencjał materiałów hydrotalkitowych jako katalizatorów technologii SCR.

Keywords

Contributors

  • UNIWERSYTET JAGIELLOŃSKI
  • UNIWERSYTET JAGIELLOŃSKI

References

  • 1. Abi Aad E., Aboukaïs A., Characterization by EPR spectroscopy, „Catalysis Today” 2000, nr 56, s. 371–378.
  • 2. Becker K. H., Lörzer J. C, Kurtenbach R., Wiesen P., Jensen T. E., Wallington T. J., Contribution of vehicle exhaust to the global N2O budget, „Chemosphere – Global Change Science” 2000, nr 2, s. 387–395.
  • 3. Beretta A., Orsenigo C., Ferlazzo N., Tronconi E., Forzatti P., Analysis of the performance of plate-type monolithic catalysts for selective catalytic reduction DeNOx applications, „Industrial & Engineering Chemistry Research” 1998, nr 37, s. 2623–2633.
  • 4. Bosch H., Janssen F., Formation and control of nitrogen oxides, „Catalysis Today” 1988, nr 2, s. 369–379.
  • 5. Brandenberger S., Kroecher O., Tissler A., Althoff R., The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts, „Catalysis Reviews Science and Engineering” 2008, nr 50, s. 492–531.
  • 6. Busca G., Lietti L., Ramis G., Berti F., Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, „Applied Catalysis B” 1998, nr 18, s. 1–36.
  • 7. Casapu M., Bernhard A., Peitz D., Mehring M., Elsener M., Kröcher O., A niobia-ceria based multi purpose catalyst for selective catalytic reduction of NOx, urea hydrolysis and soot oxidation in diesel exhaust, „Applied Catalysis B” 2011, nr 103, s. 79–84.
  • 8. Cavani F., Trifiro F., Vaccari A., Hydrotalcite-type anionic clays: Preparation, properties and applications, „Catalysis Today” 1991, nr 11, s. 173–301.
  • 9. Centi G., Perathoner S., Biglino D., Giamello E., Adsorption and reactivity of NO on copper-on-alumina catalysts: I. Formation of nitrate species and their influence on reactivity in NO and NH3 conversion, „Journal of Catalysis” 1995, nr 151, s. 75–92.
  • 10. Chae H. J., Choo S. T., Choi H., Nam I. S., Kim Y. G., Yang H. S., Choi H. Ch., Direct use of kinetic parameters for modeling and simulation of a selective catalytic reduction process, „Industrial & Engineering Chemistry Research” 2000, nr 39, s. 1159–1170.
  • 11. Chae H. J., Choo S. T., Choi H., Nam I.-S., Kim Y. G., Yang H. S., Choi H. Ch., Direct use of kinetic parameters for modeling and simulation of SCR process, „Industrial & Engineering Chemistry Research” 2000, nr 39, s. 1159–1170.
  • 12. Chen J. P., Yang R. T., Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia, „Applied Catalysis A” 1992, nr 80, s. 135–148.
  • 13. Chmielarz L., Jabłońska M., Strumiński A., Piwowarska Z., Węgrzyn A., Witkowski S., Michalik M., Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-MgAl and Fe-Mg-Al mixed metal oxides doped with noble metals, „Applied Catalysis B” 2013, nr 130–131, 152–162.
  • 14. Chmielarz L., Kuśtrowski P., Rafalska-Łasocha A., Majda D., Dziembaj R., Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia,„Applied Catalysis B” 2002, nr 35, s. 195–210.
  • 15. Chmielarz L., Piwowarska Z., Rutkowska M., Wojciechowska M., Dudek B., Witkowski S., Michalik M., Total oxidation of selected mono-carbon VOCs over hydrotalcite originated metal oxide catalysts, „Catalysis Communications” 2012, nr 17, s. 118-125.
  • 16. Chmielarz L., Węgrzyn A., Wojciechowska M., Witkowski S., Michalik M., Selective catalytic oxidation (SCO) of ammonia to nitrogen over hydrotalcite originated Mg-CuFe mixed metal oxides, „Catalysis Letters” 2011, nr 141, s. 1345–1354.
  • 17. Ciardelli C., Nova I., Tronconi E. Chatterjee D., Bandl-Konrad B., A „Nitrate Route” for the low temperature „Fast SCR” reaction over a V2O5-WO3/TiO2 commercial catalyst, „Chemical Communications” 2004, nr 23, s. 2718–2719.
  • 18. Claudel B., Brousse E., Shehadeh G., Novel thermodynamic and kinetic investigation of ammonium carbonate decomposition into urea, „Thermochimica Acta” 1986, nr 102, s. 357–371.
  • 19. Curry-Hyde H. E., Musch H., Baiker A., Schraml-Marth M., Wokaun A., Surface structure of crystalline and amorphous chromia catalysts for the selective catalytic reduction of nitric oxide I. Characterization by temperature-programmed reaction and desorption, „Journal of Catalysis” 1992, nr 133, s. 397–414.
  • 20. Eichelbauma M., Farrautoa R. J., Castaldia M. J., The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NOx. Part I.
  • 21. F. Janssen, R. Meijer, Quality control of DeNOx catalysts: Performance testing, surface analysis and characterization of DeNOx catalysts, „Catalysis Today” 1993, nr 16, s. 157–185.
  • 22. Forzatti P., Lietti L., Tronconi E., Nitrogen oxides removal-industrial, „Encyclopedia of Catalysis” 2002, s. 1–57.
  • 23. Forzatti P., Nova I., Tronconi E., Enhanced NH3 selective catalytic reduction for NOx abatement, „Angewandte Chemie” 2009, nr 121, s. 8516–8518.
  • 24. Forzatti P., Present status and perspectives in de-NOx SCR catalysis, „Applied Catalysis A” 2001, nr 222, s. 221–236.
  • 25. Grossale A., Nova I., Tronconi E., Chatterjee D., Weibel M., The chemistry of the NO/NO2-NH3 „fast” SCR reaction over Fe-ZSM-5 investigated by transient reaction analysis, „Journal of Catalysis” 2008, nr 256, s. 312–322.
  • 26. Grout S., Blaisot J.-B., Pajot K., Osbat G., Experimental investigation on the injection of an urea-water solution in hot air stream for the SCR application: Evaporation and spray/wall interaction, „Fuel” 2013, nr 106, s. 166–177.
  • 27. Gullett B. K., Groff P. W., Lin M. L., Chen J. M., NOx removal with combined selective catalytic reduction and selective noncatalytic reduction: pilot-scale test results, „Journal of the Air & Waste Management Association” 1994, nr 44, s. 1188–1193.
  • 28. Heck R. M., Catalytic abatement of nitrogen oxides–stationary applications, „Catalysis Today” 1999, nr 53, s. 519–523.
  • 29. Hilbrig F., Göbel H. E., Knözinger H., Schmelz H., Langeler B., Interaction of arsenious oxide with DeNOx-catalysts: An X-ray absorption and diffuse reflectance infrared spectroscopy study, „Journal of Catalysis” 1991, nr 129, s. 168–176.
  • 30. Irfan M. F., Goo J. H., Kim S. D., Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process, „Applied catalysis B” 2008, nr 78, s. 267–274.
  • 31. Isla M. A., Irazoqui H. A., Genoud C. M., Simulation of a urea synthesis reactor. Part 1. Thermodynamic framework, „Industrial & Engineering Chemistry Research” 1993, nr 32, s. 2662–2670.
  • 32. Janssen F., Meijer R., Quality control of DeNOx catalysts: Performance testing, surface analysis and characterization of DeNOx catalysts, „Catalysis Today” 1993, nr 16, s. 157–185.
  • 33. Kapteijn F., Singoredjo L., Dekker N. J. J., Moulijn J. A., Kinetics of the selective catalytic reduction of nitrogen oxide (NO) with ammonia over manganese oxide (Mn2O3)-tungsten oxide (WO3)/.gamma. alumina, „Industrial & Engineering Chemistry Research” 1993, nr 32, s. 445–452.
  • 34. Kobel M., Elsener M., Kleemann M., Urea-SCR: a promoting technique to reduce NOx emissions from automotive diesel engines, „Catalysis Today” 2000, nr 59, s. 335–345.
  • 35. Lange F. C., Schmelz H., Knözinger H., Infrared-spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide, „Applied Catalysis B” 1996, nr 8, s. 245–265.
  • 36. Lee S. M., Park K. N., Kim B. H., Characteristics of reducing NO using urea and alkaline additives, „Combustion and Flame” 2005, nr 141, s. 200–203.
  • 37. Lefers J. B., Lodders P., Gerd G. D., Modeling of selective catalytic DeNOx reactors – strategy for replacing deactivated catalyst elements, „Chemical Engineering & Technology” 1991, nr 14, s. 192–200.
  • 38. Li J., Chang H., Ma L., Hao J., Yang R. T., Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts - A review, „Catalysis Today” 2011, nr 175, s. 147–156.
  • 39. Liu F., He H., Zhang Ch., Novel iron titanate catalyst for the selective catalytic reduction of NO with = NH3 in the medium temperature range, „Chemical Communications” 2008, nr 17, s. 2043–2045.
  • 40. Luo J.-Y., Hou X., Wijayakoon P., Schmieg S. J., Li W., Epling W. S., Spatially resolving SCR reactions over a Fe/zeolite catalyst, “Applied Catalysis B” 2011, nr 102, s. 110–119.
  • 41. Matsumoto S., Ikeda Y., Suzuki H., Ogai M., Miyoshi N., NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning, „Applied Catalysis B” 2000, nr 25, s. 115–124.
  • 42. Montanari B., Vaccari A., Gazzano M., Käßner P., Papp H., Pasel J., Dziembaj R., Makowski W., Lojewski T., Characterization and activity of novel copper-containing catalysts for selective catalytic reduction of NO with NH3, „Applied Catalysis B” 1997, nr 13, s. 205–217.
  • 43. Nakahjima F., Hamada I., The state-of-the-art technology of NOx control, „Catalysis Today” 1996, nr 29, s. 109–115.
  • 44. Nedyalkova R., Kamasamudram K., Currier N. W., Li J., Yezerets A., Olsson L., Experimental evidence of the mechanism behind NH3 overconsumption during SCR over Fe-zeolites, „Journal of Catalysis” 2013, nr 299, s. 101–108.
  • 45. Nikolopoulos A. A., Stergioula E. S., Efthimiadis E. A., Vasalos I. A., Selective catalytic reduction of NO by propene in excess oxygen on Pt- and Rh-supported alumina catalysts, „Catalysis Today” 1999, nr 54, s. 439–450.
  • 46. Normann F., Andersson K., Leckner B., Johnsson F., Emission control of nitrogen oxides in the oxy-fuel process, „Progress in Energy and Combustion Science” 2009, nr 35, s. 385–397.
  • 47. Nova I., dall’Acqua L., Lietti L., Giamello E., Forzatti P., Study of thermal deactivation of de-NOx commercial catalyst, „Applied Catalysis B” 2001, nr 35, s. 31–42.
  • 48. Pârvulescu V. I., Grange P., Delmon B., Catalytic removal of NO, „Catalysis Today” 1998, nr 46, s. 233–316.
  • 49. Pinoy L. J., Hosten L. H., Experimental and kinetic modeling study of DeNOx on an industrial V2O5-WO3/TiO2 catalysts, „Catalysis Today” 1993, nr 17, s. 151–158.
  • 50. Radojevic M., Reduction of nitrogen oxides in flue gases, „Environmental Pollution” 1998, nr 102, s. 685–689.
  • 51. Ramis G., Larrubia M. A., An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts, „Journal of Molecular Catalysis A” 2004 nr 215, s. 161–167.
  • 52. Roduit B., Wokaun A., Baiker A., Global Kinetic Modeling of Reactions Occurring during Selective Catalytic Reduction of NO by NH3 over Vanadia/Titania-Based Catalysts, „Industrial & Engineering Chemistry Research” 1998, nr 37, s. 4577–4590.
  • 53. Rota R., Zanoelo E. F., Influence of oxygenated additives on the NOxOUT process efficiency, „Fuel” 2003, nr 82, s. 765–770.
  • 54. Rusznak C., Jenkins S., Mills P. R., Sapsford R. J., Devalia J. L., Davies R. J., Mechanism of pollution-induced allergy and asthma, „Revue Française d’Allergologie et d’Immunologie Clinique” 1998, nr 38, s. S80–S90.
  • 55. Skalska K., Miller J. S., Ledakowicz S., Trends in NOx abatement: A review, „Science of the Total Environment” 2010, nr 408, s. 3976–3989.
  • 56. Takagi M., Kawai T., Soma M., Onishi T., Tamaru K., The mechanism of the reaction between NOx and NH3 on V2O5 in the presence of oxygen, „Journal of Catalysis” 1977, nr 50, s. 441–446.
  • 57. Takagi M., Kawai T., Soma M., Onishi T., Tamaru K., The mechanism of the reaction between NOx and NH3 on V2O5 in the presence of oxygen, „Journal of Catalysis” 1977, nr 50, s. 441–446.
  • 58. Takahashi N., Shinjoh H., Iijima T., Suzuki T., Yamazaki K., Yojota K., Suzuki H., Miyoshi N., Matsumoto S., Tanizawa T., Tanaka T., Tateishi S., Kasahara K., The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst, „Catalysis Today” 1996, nr 27, s. 63-69.
  • 59. Tang X., Madronich S., Wallington T., Calamari D., Changes in tropospheric composition and air quality, „Journal of Photochemistry and Photobiology B” 1998, nr 46, s. 83–95.
  • 60. Trombetta M., Ramis G., Busca G., Montanari B., Vaccari A., Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcite-type precursors, „Langmuir” 1997, nr 13 (17), s. 4628–4637.
  • 61. Tronconi E., Forzatti P., Adequacy of lumped parameters models for SCR reactors with monolith structure, „AIChE Journal” 1992, nr 38, s. 201–210.
  • 62. Tronconi E., Lietti L., Forzatti P., Malloggi S., Experimental and theoretical investigation of the dynamics of the SCR-DeNOx reaction, „Chemical Engineering Science” 1996, 51, s. 2965–2970.
  • 63. Wang W., Hwang S.-J., Effects of the pretreatment of Cu-Y zeolite catalysts on the reduction of nitric oxide with ammonia, „Applied Catalysis B” 1995, nr 5, s. 187–197.
  • 64. Wang Z., Zhou J., Zhu Y., Wen Z., Liu J., Cen K., Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results, „Fuel Processing Technology” 2007, nr 88, s. 817–23.
  • 65. Yun B. K., Kim M. Y., Modeling the selective catalytic reduction of NOx by ammonia over a vanadia-based catalyst from heavy duty diesel exhaust gases, „Applied Thermal Engineering” 2013, nr 50, s. 152–158.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f1987d9a-2f41-4358-a733-8980f8f13222
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.