Preferences help
enabled [disable] Abstract
Number of results
2020 | 143 | 224-261
Article title

Force Modeling and Dynamic Behaviour of Multi-Dimensional Vibration Assisted Micro-End Milling: Linear and Nonlinear Analyses

Title variants
Languages of publication
The concept of component miniaturization is core in the production of sensitive components of the micro, nano and meso-scale. Vibration assisted micro-end milling is a miniaturized machining method that effectively produce these components. This paper presents the linear and nonlinear models describing the vibratory behavior of the sensitive system bearing in mind the amplitude stability phenomenon. The linear case is considered and solved analytically, the non-linear case is solved using differential transform method. With the aid of the developed solutions, parametric studies are carried out and the results are discussed. It is hope that the present study will help the manufacturing industry’s desire for maximizing metal removal rates while maintaining acceptable surface finish and tool life especially in the micro machining of various components for industrial applications, medical and energy industries.
Physical description
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria
  • [1] M. Xiao, S. Karube, T. Soutome, K. Sato. Analysis of chatter suppression in vibration cutting. International Journal of Machine Tools and Manufacture, 42(15) (2002) 1677-1685
  • [2] S. M. K Tabatabaei, S. Behbahani and S.M. Mirian, Analysis of ultrasonic assisted machining (UAM) on regenerative chatter in turning. Journal of Materials Processing Technology, 213(3) (2013) 418-425
  • [3] W. Y. Bao, I. N. Tansel. Modeling micro-end-milling operations. Part I: analytical cutting force model. Int. J. Mach. T. Manuf. V 40 (2000) 2155-2173
  • [4] X. Fan and M. H. Miller. Force Modeling in Vibration Assisted Cutting. Proc. of the 2001 ASPE Annual Meeting, 409-412.
  • [5] T. A. Dow, M. A. Cerniway and A. Sohn. Vibration Assisted Diamond Turning Using Elliptical Tool Motion. Proc. of the 2001 ASPE Annual Meeting, 92-97.
  • [6] N. H. Hanna and Tobias, S. A. A theory of nonlinear regenerative chatter. Trans. ASME, J. Engng Ind. 96 (1974) 247-255
  • [7] Y. Altintas and E. Budak. Analytical prediction of stability lobes in milling. Ann. CIRP, 44(1) (1995) 357-362
  • [8] E. Budak and Y. Altintas. Analytical prediction of chatter stability in milling, Part I: general formulation. Trans. ASME, J. Dyn. Syst. Meas. Control 120(1) (1998) 22-30
  • [9] E. Budak and Y. Altintas. Analytical prediction of chatter stability in milling, Part II: application of the general formulation to common milling systems.Trans. ASME, J. Dyn. Syst. Meas. Control 120(1) (1998) 31-36
  • [10] X. K. Luo, K. Cheng, K., X. C. Luo and X. V. Liu, X. W. A simulated investigation on the machining instability and dynamic surface generation. Int. J. Adv. Mf. Technol. 26 (2005) 457-465
  • [11] F. Vollertsen, D. Biermann, H. N. Hansen, I. S. Jawahir, K. Kuzman. Size effects in manufacturing of metallic components. CIRP Annals, V 58 (2009) 566-587
  • [12] V. I. Babitsky, A. N. Kalashnikov, A. Meadows, and A. A. H. P. Wijesundara. Ultrasonically assisted turning of aviation materials. J. Mater. Process. Technol. 132 (2003) 157-160
  • [13] H. Jamshidi, M.J. Nategh, Theoretical and experimental investigation of the frictional behavior of the tool–chip interface in ultrasonic vibration assisted turning. Int. J. Mach. Tools Manuf. 65 (2013) 1-7.
  • [14] S. Patil, S. Joshi, A. Tewari, S.S. Joshi, Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrason. 54 (2014) 694-705
  • [15] P. Guo, K.F. Ehmann, An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int. J. Mach. Tools Manuf. 64 (2013) 85-95
  • [16] Ahmed Syed Adnan, Sathyan Subbiah. Experimental investigation of transverse vibration-assisted orthogonal cutting of AL-2024. International Journal of Machine Tools and Manufacture Volume 50, Issue 3, March 2010, Pages 294-302
  • [17] Maroju Naresh Kumar, S. Kanmani Subbu, P. Vamsi Krishna, A. Venugopal. Vibration Assisted Conventional and Advanced Machining: A Review. Procedia Engineering Volume 97, 2014, Pages 1577-1586
  • [18] X. Zhang, A.S. Kumar, M. Rahman, C. Nath, K. Liu, Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools. J. Mater. Process. Technol. 211 (2011) 1701-1709
  • [19] J.C. Outeiroa, J.P. Costesa, J.R. Kornmeierb. Cyclic variation of residual stress induced by tool vibration in machining operations. Procedia CIRP. 8 (2013) 493-497
  • [20] H. Ding, R. Ibrahim, K. Cheng, S.-J. Chena, Experimental study on machinability improvement of hardened tool steel using two-dimensional vibration-assisted micro-end-milling. Int. J. Mach. Tools Manuf. 50 (2010) 1115-1118
  • [21] X.-H. Shen, J.-H. Zhang, H. Li, J.-J. Wang, X.-C. Wang, Ultrasonic vibration-assisted milling of aluminum alloy. Int. J. Adv. Manuf. Technol. 63 (2012) 41-49
  • [22] H. Liana, Z. Guoa, Z. Huanga, Y. Tanga, J. Songa, Experimental research of Al-6061 on ultrasonic vibration assisted micro-milling. Procedia CIRP. 6 (2013) 561-564
  • [23] S.S.F. Chang, G.M. Bone. Thrust force model for vibration assisted drilling of aluminum 6061-T6. Int. J. Mach. Tools Manuf. 49 (2009) 1070-1076
  • [24] V.A. Phadnis, A. Roy, V.V. Silberschmidt, A finite element model of ultrasonically assisted drilling in carbon/epoxy composites. Procedia CIRP. 8 (2013) 141-146
  • [25] M.A. Kadivar, J. Akbari, R. Yousefi, A. Rahi, M. Ghahramani Nick, Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/Sicp metal matrix composites. Rob. Comput. Integr. Manuf. 30 (2014) 344-350
  • [26] M. Aziza, O. Ohnishib, H. Onikurab, Novel micro deep drilling using micro long flat drill with ultrasonic vibration. Precis. Eng. 36 (2012) 168-174
  • [27] P. Mehbudia, V. Baghlania, J. Akbaria, A.R. Bushroab, N.A. Mardib, Applying ultrasonic vibration to decrease drilling-induced delamination in GFRP laminates. Procedia CIRP 6 (2013) 577-582
  • [28] S. Aoki, S. Hirai, T. Nishimura, Prevention from delamination of compositematerial during drilling using ultrasonic vibration. Key Eng. Mater. 291-292 (2005) 465-470
  • [29] Z. Liang, Y. Wub, X. Wanga, A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in mono crystal silicon machining. Int. J. Mach. Tools Manuf. 50 (2010) 728-736
  • [30] G. Chern and Y. Chang. Using two-dimensional vibration cutting for micro-milling. Int. J. Mach. Tools Mf. 46 (2006) 659-666
  • [31] I. S. Kang, J. S. Kim, J. H. Kim, M. C. Kang, and Y. W. Seo. A mechanis tic model of cutting force in the micro end milling process. J. Mater. Process. Technol. 187-188 (2007) 250-255
  • [32] M. T. Zaman, S. Kumar, A., M. Rahman, and S. Sreeram. A three-dimensional analytical cutting force model for micro end milling operation. Int. J. Mach. Tools Mf. 46 (2006) 353-366
  • [33] H. Ding, S. Chen and K. Cheng Two dimensional vibration-assisted micro-milling: kinematics simulation, chip thickness computation and analysis. Adv. Mater. Res. 97-101 (2010) 2779-2784
  • [34] Y. Gaoa, R. Sun, J. Leopold. Analysis of cutting stability in vibration assisted machining using an analytical predictive force model. Procedia CIRP 31 (2015) 515-520
  • [35] H. Z. Li, K. Liu, X. P. Li. A new method for determining the undeformed chip thickness in milling. J Mater Proc Technol 113(15) (2001) 378-384
  • [36] Yanjie Yuan, Xiubing Jing, Kornel F. Ehmann, Jian Cao, Huaizhong Li, Dawei Zhang. Modeling of cutting forces in micro end-milling. Journal of Manufacturing Processes Volume 31, January 2018, Pages 844-858
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.