Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 23-40

Article title

FROM CHITIN TO CHITOSAN – A POTENTIAL NATURAL ANTIMICROBIAL AGENT

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitin is a naturally occurring polymer. Together with its derivatives such as chitosan, it has a wide spectrum of application possibilities, and many properties not yet exploited. Chitosan possesses many features desirable in an ideal antimicrobial polymer. It shows activity against multidrug-resistant bacterial and fungal strains that pose a challenge to modern medicine. Chitosan also shows activity against certain viruses, such as SARS-CoV-2. It might be used as a drug or a vaccine delivery system, is biodegradable, bioavailable and considered safe for medical use. It is important to continue exploring the potential of chitosan, as well as to investigate its sources. Indeed, many sources of this polymer are still not or have been poorly described. In this paper, we compile the current state of knowledge on the antimicrobial properties of chitosan, list alternative sources of chitin to highlight the potential of these two polymers and encourage further research.

Contributors

author
  • Faculty of Oceanography and Geography, Institute of Oceanography University of Gdansk
  • Faculty of Oceanography and Geography, Institute of Oceanography University of Gdansk

References

  • Bonneville S., Delpomdor F., Préat A., Chevalier C., Araki T., Kazemian M., Benning L.G. (2020). Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Science advances, 6(4), eaax7599. DOI:https://doi.org/10.1126/sciadv.aax7599
  • Gadgey K.K. and Amit Bahekar A. (2017). Studies On Extraction Methods of Chitin From CRAB Shell and Investigation of Its Mechanical Properties. International Journal of Mechanical Engineering and Technology, 8(2), pp. 220–231.
  • Kean T., Thanou M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced drug delivery reviews, 62(1), 3–11. DOI:https://doi.org/10.1016/j.addr.2009.09.004
  • Rodrigues S., Dionísio M., López C.R., Grenha A. (2012). Biocompatibility of chitosan carriers with application in drug delivery. Journal of functional biomaterials, 3(3), 615-641. DOI: https://doi.org/10.3390/jfb3030615
  • Morin-Crini N., Lichtfouse E., Torri G., Crini G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 1-26. DOI: https://doi.org/10.1007/s10311-019-00904-x
  • World Health Organization, https://www.who.int/ [accessed 1 September 2020]
  • Rautemaa-Richardson R., Richardson M.D. (2017). Systemic fungal infections. Medicine, 45(12), 757–762. DOI:https://doi.org/10.1016/j.mpmed.2017.09.007
  • Ashurst J.V., Dawson A. (2020). Klebsiella Pneumonia. In: StatPearls. StatPearls Publishing, Treasure Island (FL).
  • Matica M.A., Aachmann F.L., Tøndervik A., Sletta H., Ostafe V. (2019). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International journal of molecular sciences, 20(23), 5889. DOI:https://doi.org/10.3390/ijms20235889
  • Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-–1465. DOI:https://doi.org/10.1021/bm034130m
  • Shahidi F., Abuzaytoun R. (2005). Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Advances in food and nutrition research, 49, 93-137.
  • Younes I., Rinaudo M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs, 13(3), 1133–1174. DOI:https://doi.org/10.3390/md13031133
  • Feng M., Lu X., Zhang J., Li Y., Shi C., Lu L., Zhang S. (2019). Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chemistry, 21(1), 87–98. DOI:https://doi.org/10.1039/C8GC02506A
  • Muthuchamy M., Govindan R., Shine K., Thangasamy V., Alharbi N.S., Thillaichidambaram M., Alanzi K. F. (2020). Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae. Carbohydrate polymers, 230, 115646. DOI:https://doi.org/10.1016/j.carbpol.2019.115646
  • Sudatta B. P., Sugumar V., Varma R., Nigariga P. (2020). Extraction, characterization and antimicrobial activity of chitosan from pen shell, Pinna bicolor. International Journal of Biological Macromolecules, 163, 423–430. DOI:https://doi.org/10.1016/j.ijbiomac.2020.06.291
  • Nishimura S. I., Kai H., Shinada K., Yoshida T., Tokura S., Kurita K., H. Nakashimad N. Yamamoto Uryu T. (1998). Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydrate Research, 306(3), 427–433. DOI: https://doi.org/10.1016/S0008-6215(97)10081-7
  • Milewska A., Chi Y., Szczepanski A., Barreto-Duran E., Liu K., Liu D., Guo X., Ge Y., Li J., Cui L., Ochman M., Urlik M., Rodziewicz-Motowidlo S., Zhu F., Szczubialka K., Nowakowska M., Pyrc K. (2020). HTCC as a highly effective polymeric inhibitor of SARS-CoV-2 and MERS-CoV. BioRxiv. DOI:https://doi.org/10.1101/2020.03.29.014183
  • Muzzarelli R.A. (1999). Native, industrial and fossil chitins. Chitin and Chitinases, Exs, 87, 1-6. DOI: https://doi.org/10.1007/978-3-0348-8757-1_1.
  • Abd Razak N.H., Abdullah N.N., Ismail K.N. (2016). Chitin extraction from Leucaena Leucocephala pods. International Journal of Applied Chemistry, 12(1), 136–140. DOI: https://doi.org/10.14419/ijet.v7i4.18.21938
  • Pandharipande S., Jana R., Ramteke A. (2018). Synthesis and characterization of chitosan from fish scales. Int. J. Sci. Eng. Technol. Res.(IJSETR), 7, 287–291.
  • Roberts G.A. (2008). Thirty years of progress in chitin and chitosan. Progress on chemistry and application of chitin and its derivatives, 13, 7–15.
  • Kaya M., Lelešius E., Nagrockaitė R., Sargin I., Arslan G., Mol A., Baran T., Can E., Bitim B. (2015). Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PloS one, 10(1), e0115531. DOI: https://doi.org/10.1371/journal.pone.0115531
  • Erdogan S., Kaya M., Akata I. (2017). Chitin extraction and chitosan production from cell wall of two mushroom species (Lactarius vellereus and Phyllophora ribis). In AIP Conference Proceedings (Vol. 1809, No. 1, p. 020012). AIP Publishing LLC. DOI:https://doi.org/10.1063/1.4975427
  • Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Rajeevgandhi C., Rajan D. K., Seedevi P. (2019). Extraction and characterization of chitin from sea snail Conus inscriptus (Reeve, 1843). International journal of biological macromolecules, 126, 555–560. DOI:https://doi.org/10.1016/j.ijbiomac.2018.12.241
  • Nguyen A. (2020). Production of fungal chitosan for wastewater treatment.
  • Bastiaens L., Soetemans L., D’Hondt E., Elst K. (2019). Sources of Chitin and Chitosan and their Isolation. Chitin and Chitosan: Properties and Applications, 1–34. DOI: https://doi.org/10.1002/9781119450467.ch1
  • Pillai C.K.S., Paul W., Sharma C.P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in polymer science, 34(7), 641–678. DOI:https://doi.org/10.1016/j.progpolymsci.2009.04.001
  • Rinaudo M. (2006). Chitin and chitosan: properties and applications. Progress in polymer science, 31(7), 603–632. DOI:https://doi.org/10.1016/j.progpolymsci.2006.06.001
  • Rumengan I.F.M., Suptijah P., Wullur S., Talumepa A. (2017). Characterization of chitin extracted from fish scales of marine fish species purchased from local markets in North Sulawesi, Indonesia. In IOP Conf. Series: Earth and Environmental Science (pp. 1755-1315). DOI: https://doi.org/10.1088/1755-1315/89/1/012028/meta
  • Mucha M. (2010). Chitozan–wszechstronny polimer ze źródeł nieodnawialnych, Wyd. Naukowo-Techniczne, Warszawa.
  • Jang M.K., Kong B. G., Jeong Y. I., Lee C. H., Nah J. W. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42(14), 3423–3432. DOI: https://doi.org/10.1002/pola.20176
  • Arbia W., Arbia L., Adour L., Amrane A. (2013). Chitin extraction from crustacean shells using biological methods–a review. Food Technology and Biotechnology, 51(1), 12–25.
  • Percot A., Viton, C., Domard A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1), 12-18. DOI:https://doi.org/10.1021/bm025602k
  • Al Hoqani H.A.S., Noura A.S., Hossain M.A., Al Sibani, M.A. (2020). Isolation and optimization of the method for industrial production of chitin and chitosan from Omani shrimp shell. Carbohydrate research, 492, 108001. DOI:https://doi.org/10.1016/j.carres.2020.108001
  • Qin Y., Lu X., Sun N., Rogers R.D. (2010). Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 12(6), 968–971. DOI:https://doi.org/10.1039/C003583A
  • Hayes R., Warr G.G., Atkin R. (2015) Structure and nanostructure in ionic liquids. Chemical reviews, 115(13), 6357–6426. DOI: https://doi.org/10.1021/cr500411q
  • Zhu P., Gu Z., Hong S., Lian H. (2017). One-pot production of chitin with high purity from lobster shells using choline chloride–malonic acid deep eutectic solvent. Carbohydrate polymers, 177, 217–223. DOI:https://doi.org/10.1016/j.carbpol.2017.09.001
  • Saravana P.S., Ho T.C., Chae S.J., Cho Y.J., Park J.S., Lee H.J., Chun B.S. (2018). Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydrate polymers, 195, 622–630. DOI:https://doi.org/10.1016/j.carbpol.2018.05.018
  • Huang W. C., Zhao D., Guo N., Xue C., Mao X. (2018). Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. Journal of agricultural and food chemistry, 66(45), 11897–11901. DOI:https://doi.org/10.1021/acs.jafc.8b03847
  • Paiva A., Craveiro R., Aroso I., Martins M., Reis R.L., Duarte A.R.C. (2014). Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5), 1063–1071. DOI: https://doi.org/10.1021/sc500096j
  • Mišan A., Nađpal J., Stupar A., Pojić M., Mandić A., Verpoorte R., Choi Y.H. (2020). The perspectives of natural deep eutectic solvents in agri-food sector. Critical reviews in food science and nutrition, 60(15), 2564–2592. DOI:https://doi.org/10.1080/10408398.2019.1650717
  • Nowacki K., Stępniak I., Langer E., Tsurkan M., Wysokowski M., Petrenko I., Ehrlich H. (2020). Electrochemical approach for isolation of chitin from the skeleton of the black coral Cirrhipathes sp.(Antipatharia). Marine Drugs, 18(6), 297. DOI:https://doi.org/10.3390/md18060297
  • Borić M., Puliyalil H., Novak U., Likozar B. (2018). An intensified atmospheric plasma-based process for the isolation of the chitin biopolymer from waste crustacean biomass. Green Chemistry, 20(6), 1199–1204. DOI:https://doi.org/10.1039/C7GC03735J
  • Borić M., Vicente F.A., Jurković D.L., Novak U., Likozar B. (2020). Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process. Carbohydrate Polymers, 246, 116648. DOI:https://doi.org/10.1016/j.carbpol.2020.116648
  • Liu Y., Xing R., Yang H., Liu S., Qin Y., Li K., Li P. (2020). Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens. International journal of biological macromolecules, 148, 424–433. DOI:https://doi.org/10.1016/j.ijbiomac.2020.01.124
  • Biniaś D., Biniaś W., Janicki J. (2018). Formation of fibres and spheres from chitin solution. Progress on Chemistry and Application of Chitin and its Derivatives, 23, 25–32. DOI: https://doi.org/10.15259.PCACD.23.02
  • Lv S.H. (2016). High-performance superplasticizer based on chitosan. In Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials (pp. 131–150). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-100214-8.00007-5
  • Ilium L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharmaceutical research, 15(9), 1326–1331. DOI: https://doi.org/10.1023/A:1011929016601
  • Chirkov S.N., Il’ina A.V., Surgucheva N.A., Letunova E.V., Varitsev Y.A., Tatarinova N.Y., Varlamov V.P. (2001). Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russian Journal of Plant Physiology, 48(6), 774–779. DOI: https://doi.org/10.1023/a:1012508625017
  • Xing L., Fan Y.T., Zhou T.J., Gong J.H., Cui L.H., Cho K.H., Choi Y.J., Jiang H.L., Cho C. S. (2018). Chemical modification of chitosan for efficient vaccine delivery. Molecules, 23(2), 229. DOI: https://doi.org/10.3390/molecules23020229
  • Sogias I.A., Williams A.C., Khutoryanskiy V.V. (2008). Why is chitosan mucoadhesive?. Biomacromolecules, 9(7), 1837–1842. DOI:https://doi.org/10.1021/bm800276d
  • Bodek K.H. (2007). The effect of temperature and chitosan form on the process of metal ions sorption. Polish Chitin Society, Monograph, 71–77.
  • Wiśniewska-Wrona M., Niekraszewicz A., Ciechańska D., Pospieszny H., Orlikowski L. B. (2007). Biological properties of chitosan degradation products. Polish Chitin Soiety, Monograph, 12, 149–156.
  • Liu X., Song L., Li L., Li S., Yao K. (2007). Antibacterial effects of chitosan and its water-soluble derivatives on E. coli, plasmids DNA, and mRNA. Journal of applied polymer science, 103(6), 3521–3528. DOI: https://doi.org/10.1002/app.25421
  • Atay H.Y. (2019). Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan (pp. 457–489). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-0263-7
  • Liu H., Du Y., Wang X., Sun L. (2004). Chitosan kills bacteria through cell membrane damage. International journal of food microbiology, 95(2), 147–155. DOI:https://doi.org/10.1016/j.ijfoodmicro.2004.01.022
  • Hoque J., Adhikary U., Yadav V., Samaddar S., Konai M. M., Prakash R. G., Haldar J. (2016). Chitosan derivatives active against multidrug-resistant bacteria and pathogenic fungi: in vivo evaluation as topical antimicrobials. Molecular pharmaceutics, 13(10), 3578–3589. DOI:https://doi.org/10.1021/acs.molpharmaceut.6b00764
  • Vigani B., Rossi S., Sandri G., Bonferoni M.C., Caramella C.M., Ferrari F. (2019). Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opinion on Drug Delivery, 16(7), 715–740. DOI:https://doi.org/10.1080/17425247.2019.1634051
  • Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A. (2019). Methicillinresistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17, 203–218. DOI: https://doi.org/10.1038/s41579-018-0147-4
  • Hamed A.A., Abdelhamid I.A., Saad G.R., Elkady N.A., Elsabee M.Z. (2020). Synthesis, characterization and antimicrobial activity of a novel chitosan schiff bases based on heterocyclic moieties. International journal of biological macromolecules, 153, 492–501. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.302
  • Kochańska B., Kędzia A., Gębska A. (2016). Sensitivity to chitosan ascorbate microaerophilic bacteria isolated from infections of oral cavity. Progress on Chemistry and Application of Chitin and its Derivatives, 21, 109–113. DOI:https://doi.org./10.15259/PCACD.21.11
  • Frieri M., Kumar K., Boutin A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369–378. DOI: https://doi.org/10.1016/j.jiph.2016.08.007
  • Bano I., Arshad M., Yasin T., Ghauri M.A., Younus M. (2017). Chitosan: A potential biopolymer for wound management. International journal of biological macromolecules, 102, 380–383. DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.047
  • Masuoka J. (2004). Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clinical microbiology reviews, 17(2), 281–310. DOI: https://doi.org/10.1128/CMR.17.2.281-310.2004
  • Manea L., Eklo O.M., Stenrod M. (2017). Economic importance and environmental impact of pesticides; a review of the literature. Annals Food Science and Technology, 18(2), 324–332.
  • El Ghaouth A., Arul J., Grenier J., Asselin A. (1992). Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology, 82(4), 398–402. DOI: https://doi.org/10.1094/Phyto-82-398
  • Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. (2017). The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet infectious diseases, 17(12), e383–e392. DOI: https://doi.org/10.1016/S1473-3099(17)30316-X
  • Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2002). Introduction to pathogens. In Molecular Biology of the Cell. 4th edition. Garland Science.
  • Divya K., Smitha V., Jisha M.S. (2018). Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International journal of biological macromolecules, 114, 572–577. DOI:https://doi.org/10.1016/j.ijbiomac.2018.03.130
  • Acheson N.H. (2011). Fundamentals of molecular virology (No. Ed. 2). John Wiley & Sons, Inc.
  • Chirkov S.N. (2002). The antiviral activity of chitosan. Applied Biochemistry and Microbiology, 38(1), 1–8. DOI: https://doi.org/10.1021/jf971047f
  • Ishihara C., Yoshimatsu K., Tsuji M., Arikawa J., Saiki I., Tokura S., Azuma I. (1993). Anti-viral activity of sulfated chitin derivatives against Friend murine leukaemia and herpes simplex type-1 viruses. Vaccine, 11(6), 670–674. DOI:https://doi.org/10.1016/0264-410X(93)90315-O
  • Milewska A., Ciejka J., Kaminski K., Karewicz A., Bielska D., Zeglen S., Karolak W., Nowakowska M., Potempa J., Bosh B.J., Pyrc K., Szczubialka K. (2013). Novel polymeric inhibitors of HCoV-NL63. Antiviral research, 97(2), 112–121. DOI:https://doi.org/10.1016/j.antiviral.2012.11.006
  • Milewska A., Kaminski K., Ciejka J., Kosowicz K., Zeglen S., Wojarski J., Nowakowska M., Szczubiałka K., Pyrc K. (2016). HTCC: Broad range inhibitor of coronavirus entry. PLoS One, 11(6), e0156552. DOI:https://doi.org/10.1371/journal.pone.0156552
  • Loutfy S.A., Elberry M.H., Farroh K.Y., Mohamed H.T., Mohamed A.A., Mohamed E.B., Mousa S.A. (2020). Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. International journal of nanomedicine, 15, 2699. DOI:https://doi.org/10.2147/IJN.S241702
  • Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of controlled release, 100(1), 5–28. DOI: https://doi.org/10.1016/j.jconrel.2004.08.010
  • Grenha A., Grainger C.I., Dailey L.A., Seijo B., Martin G.P., Remuñán-López C., Forbes B. (2007). Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. European Journal of Pharmaceutical Sciences, 31(2), 73–84. DOI:https://doi.org/10.1016/j.ejps.2007.02.008
  • Konovalova M., Shagdarova B., Zubareva A., Generalov A., Grechikhina M., Svirshchevskaya E. (2018). Development of mucoadhesive Chitosan-based drug delivery system. Progress on Chemistry and Application of Chitin and its Derivatives, 23, 103–113. DOI: https://doi.org/10.15259.PCACD.23.10
  • Hajji S., Younes I., Ghorbel-Bellaaj O., Hajji R., Rinaudo M., Nasri M., Jellouli K. (2014). Structural differences between chitin and chitosan extracted from three different marine sources. International journal of biological macromolecules, 65, 298–306. DOI: https://doi.org/10.1016/j.ijbiomac.2014.01.045
  • Cho Y.I., No H.K., Meyers S.P. (1998). Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. Journal of Agricultural and Food Chemistry, 46(9), 3839–3843. DOI:https://doi.org/10.1021/jf971047f
  • No H.K., Meyers S.P., Lee K.S. (1989). Isolation and characterization of chitin from crawfish shell waste. Journal of Agricultural and Food Chemistry, 37(3), 575–579. DOI: https://doi.org/10.1021/jf00087a001
  • Hamed I., Özogul F., Regenstein J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology, 48, 40–50. DOI: https://doi.org/10.1016/j.tifs.2015.11.007
  • Junior J.C.V., Ribeaux D.R., da Silva C.A.A., De Campos-Takaki G.M. (2016). Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Hindawi Publishing Corporation. International Journal of Microbiology. DOI:https://doi.org/10.1155/2016/5127515
  • Sorokoumov I., Zagorskiy I., Zagorskaya D., Uryash V., Kokurina N., Larina V., Nemtsev S. (2010). Physicochemical properties of chitin isolated from shell of industrial crabs of various species. Progress on Chemistry and Application of Chitin and its Derivatives, 15, 5-10.
  • Dongre R.S. (2017). Marine polysaccharides in medicine. Biological Activities and Application of Marine Polysaccharides. DOI: https://doi.org/10.5772/65786
  • Tan S.C., Tan T.K., Wong S.M., Khor E. (1996). The chitosan yield of zygomycetes at their optimum harvesting time. Carbohydrate Polymers, 30(4), 239–242. DOI:https://doi.org/10.10/S0144-8617(96)00052-5
  • Nwe N., Furuike T., Tamura H. (2011). Production, properties and applications of fungal cell wall polysaccharides: chitosan and glucan. In Chitosan for Biomaterials II (pp. 187–207). Springer, Berlin, Heidelberg. DOI:https://doi.org/10.1007/12_2011_124
  • Jones M., Kujundzic M., John S., Bismarck A. (2020). Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Marine Drugs, 18(1), 64. DOI: https://doi.org/10.3390/md18010064
  • Amorim R.V.D.S., Souza W.D., Fukushima K., Campos-Takaki G.M.D. (2001). Faster chitosan production by mucoralean strains in submerged culture. Brazilian Journal of Microbiology, 32(1), 20–23. DOI: https://doi.org/10.1590/S1517-83822001000100005
  • Kovaleva E., Pestov A., Stepanova D., Molochnikov L. (2016). Characterization of chitin and its complexes extracted from natural raw sources. In AIP Conference Proceedings (Vol. 1772, No. 1, p. 050007). AIP Publishing LLC. DOI:https://doi.org/10.1063/1.4964577
  • Hassainia A., Satha H., Boufi S. (2018). Chitin from Agaricus bisporus: Extraction and characterization. International journal of biological macromolecules, 117, 1334–1342. DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.172
  • Bai Y., Wang Y., Liu X., Zhao J., Kang L., Liu Z., Yuan S. (2020). Heterologous expression and characterization of a novel chitin deacetylase, CDA3, from the mushroom Coprinopsis cinerea. International Journal of Biological Macromolecules, 150, 536–545. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.083
  • Kasongo K.J., Tubadi D.J., Bampole L.D., Kaniki T.A., Kanda N.J.M., Lukumu M.E. (2020). Extraction and characterization of chitin and chitosan from Termitomyces titanicus. SN Applied Sciences, 2(3), 1–8. DOI:https://doi.org/10.1007/s42452-020-2186-5
  • Yen M.T., Mau J.L. (2007). Physico-chemical characterization of fungal chitosan from shiitake stipes. LWT-Food Science and Technology, 40(3), 472–479. DOI:https://doi.org/10.1016/j.lwt.2006.01.002
  • Ehrlich H., Maldonado M., Spindler K.D., Eckert C., Hanke T., Born, R., Worch H. (2007). Evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). DOI:https://doi.org/10.1002/jez.b.21156
  • Wysokowski M., Petrenko I., Stelling A.L., Stawski D., Jesionowski T., Ehrlich H. (2015). Poriferan chitin as a versatile template for extreme biomimetics. Polymers, 7(2), 235–265. DOI: https://doi.org/10.3390/polym7020235
  • Mutsenko V.V., Bazhenov V.V., Rogulska O., Tarusin D.N., Schütz K., Brüggemeier S., Meschke S. (2017). 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. International journal of biological macromolecules, 104, 1966–1974. DOI:https://doi.org/10.1016/j.ijbiomac.2017.03.116
  • Rudall K.M. (1963). The chitin/protein complexes of insect cuticles. In Advances in insect physiology (Vol. 1, pp. 257-313). Academic Press. DOI:https://doi.org/10.1016/S0065-2806(08)60177-0
  • Kaya M., Baran T. (2015). Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). International journal of biological macromolecules, 75, 7–12. DOI:https://doi.org/10.1016/j.ijbiomac.2015.01.015
  • Kaya M., Sargin I., Al-Jaf I., Erdogan S., Arslan G. (2016). Characteristics of corneal lens chitin in dragonfly compound eyes. International journal of biological macromolecules, 89, 54–61. DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.056
  • Zhang M., Haga A., Sekiguchi H., Hirano S. (2000). Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. International Journal of Biological Macromolecules, 27(1), 99–105. DOI:https://doi.org/10.1016/S0141-8130(99)00123-3
  • Kaya M., Mujtaba M., Ehrlich H., Salaberria A.M., Baran T., Amemiya C. T., Galli R., Akyuz L., Sargin I., Labidi, J. (2017). On chemistry of γ-chitin. Carbohydrate polymers, 176, 177–186. DOI: https://doi.org/10.1016/j.carbpol.2017.08.076
  • Tsaneva D., Petkova Z., Petkova N., Stoyanova M., Stoyanova A., Denev P. (2018). Isolation and Characterization of Chitin and Biologically Active Substances from Honeybee (Apis mellifera). Journal of Pharmaceutical Sciences and Research, 10(4), 884-888.
  • Majtán J., Bíliková K., Markovič O., Gróf J., Kogan G., Šimúth J. (2007). Isolation and characterization of chitin from bumblebee (Bombus terrestris). International Journal of Biological Macromolecules, 40(3), 237–241. DOI:https://doi.org/10.1016/j.ijbiomac.2006.07.010
  • Gonil P., Sajomsang W. (2012). Applications of magnetic resonance spectroscopy to chitin from insect cuticles. International journal of biological macromolecules, 51(4), 514–522. DOI: https://doi.org/10.1016/j.ijbiomac.2012.06.025
  • Wang H., ur Rehman K., Feng W., Yang D., ur Rehman R., Cai M., Zheng L. (2020). Physicochemical structure of chitin in the developing stages of black soldier fly. International Journal of Biological Macromolecules, 149, 901–907. DOI:https://doi.org/10.1016/j.ijbiomac.2020.01.293
  • Kabalak M., Aracagök D., Torun M. (2020). Extraction, characterization and comparison of chitins from large bodied four Coleoptera and Orthoptera species. International Journal of Biological Macromolecules, 145, 402–409. DOI:https://doi.org/10.1016/j.ijbiomac.2019.12.194
  • Kaya M., Baran T., Erdoğan S., Menteş A., Özüsağlam M.A., Çakmak Y.S. (2014). Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Materials Science and Engineering: C, 45, 72–81. DOI: https://doi.org/10.1016/j.msec.2014.09.004
  • Soon C.Y., Tee Y.B., Tan C.H., Rosnita A.T., Khalina A. (2018). Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. International Journal of Biological Macromolecules, 108, 135–142. DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.138
  • Kaya M., Erdogan S., Mol A., Baran T. (2015). Comparison of chitin structures isolated from seven Orthoptera species. International journal of biological macromolecules, 72, 797–805. DOI: https://doi.org/10.1016/j.ijbiomac.2014.09.034
  • Feás X., Vázquez-Tato M.P., Seijas J.A., Nikalje P.G., Fraga-López F. (2020). Extraction and Physicochemical Characterization of Chitin Derived from the Asian Hornet, Vespa velutina Lepeletier 1836 (Hym.: Vespidae). Molecules, 25(2), 384., DOI: https://doi.org/10.20944/preprints201911.0303.v1
  • Kaya M., Seyyar O., Baran T., Erdoğan S., Kar M. (2014). A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology. International journal of biological macromolecules, 65, 553–558. DOI: https://doi.org/10.1016/j.ijbiomac.2014.02.010
  • Machałowski T., Wysokowski M., Tsurkan M. V., Galli R., Schimpf C., Rafaja D., Brendler E., Viehweger C., Z˙ ółtowska-Aksamitowska S., Petrenko I., Czaczyk K. (2019). Spider chitin: an ultrafast microwave-assisted method for chitin isolation from Caribena versicolor spider molt cuticle. Molecules, 24(20), 3736. DOI:https://doi.org/10.3390/molecules24203736
  • Synowiecki J., Al-Khateeb N.A. (2003). Production, properties, and some new applications of chitin and its derivatives. DOI:https://doi.org/10.1080/10408690390826473
  • Gavalyan V.B. (2016). Synthesis and characterization of new chitosan-based Schiff base compounds. Carbohydrate polymers, 145, 37–47. DOI:https://doi.org/10.1016/j.carbpol.2016.02.076
  • Raabe D., Romano P., Sachs C., Fabritius H., Al-Sawalmih A., Yi S.B., Hartwig H.G. (2006). Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Materials science and engineering: A, 421(1-2), 143–153. DOI:https://doi.org/10.1016/j.msea.2005.09.115
  • Kaya M., Tozak K.Ö., Baran T., Sezen G., Sargin I. (2013). Natural porous and nano fiber chitin structure from Gammarus argaeus (Gammaridae Crustacea). EXCLI Journal 12:503–510.
  • Martin R., Hild S., Walther P., Ploss K., Boland W., Tomaschko K.H. (2007). Granular chitin in the epidermis of nudibranch molluscs. The Biological Bulletin, 213(3), 307–315. DOI: https://doi.org/10.2307/25066648
  • Palpandi C., Shanmugam V., Shanmugam A. (2009). Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. International Journal of Medicine and Medical Sciences, 1(5), 198–205.
  • Suzuki M., Sakuda S., Nagasawa H. (2007). Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Bioscience, biotechnology, and biochemistry, 0706060434-0706060434. DOI:https://doi.org/10.1271/bbb.70140
  • Akpan E.I., Gbenebor O.P., Adeosun S.O. (2018). Synthesis and characterisation of chitin from periwinkle (Tympanotonus fusatus (L.)) and snail (Lissachatina fulica (Bowdich)) shells. International journal of biological macromolecules, 106, 1080–1088. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.106
  • Rasti H., Parivar K., Baharara J., Iranshahi M., Namvar F. (2017). Chitin from the mollusc Chiton: extraction, characterization and chitosan preparation. Iranian journal of pharmaceutical research: IJPR, 16(1), 366.
  • Kaya M., Baublys V., Šatkauskienė I., Akyuz B., Bulut E., Tubelytė V. (2015). First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. International journal of biological macromolecules, 79, 126–132. DOI: https://doi.org/10.1016/j.ijbiomac.2015.04.066
  • Fernández M.S., Vergara I., Oyarzún (2002). Extracellular Matrix Molecules Involved in Barnacle Shell Mineralization. MRS Online Proceedings Library 724, N1.2. DOI: https://doi.org/10.1557/PROC-724-N1.2
  • Kaya M., Karaarslan M., Baran T., Can E., Ekemen G., Bitim B., Duman, F. (2014). The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula). Natural product research, 28(23), 2186–2190. DOI:https://doi.org/10.108 0/14786419.2014.927469
  • Cuong H.N., Minh N.C., Van Hoa N., Trung T.S. (2016). Preparation and characterization of high purity β-chitin from squid pens (Loligo chenisis). International journal of biological macromolecules, 93, 442–447. DOI:https://doi.org/10.1016/j.ijbiomac.2016.08.085
  • Abdelmalek B.E., Sila A., Haddar A., Bougatef A., Ayadi M.A. (2017). β-Chitin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice. International journal of biological macromolecules, 104, 953–962. DOI: https://doi.org/10.1016/j.ijbiomac.2017.06.107
  • Balitaan J.N.I., Yeh J.M., Santiago K.S. (2020). Marine waste to a functional biomaterial: Green facile synthesis of modified-β-chitin from Uroteuthis duvauceli pens (gladius). International journal of biological macromolecules, 154, 1565–1575. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.041
  • Seedevi P., Moovendhan M., Vairamani S., Shanmugam A. (2017). Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi. International journal of biological macromolecules, 99, 519–529. DOI:https://doi.org/10.1016/j.ijbiomac.2017.03.012
  • Greven H., Kaya M., Sargin I., Baran T., Kristensen R.M., Sorensen M. V. (2019). Characterisation of chitin in the cuticle of a velvet worm (Onychophora). Turkish Journal of Zoology, 43(5), 416–424. DOI: https://doi.org/10.3906/zoo-1903-37
  • Kumari S., Rath P.K. (2014). Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Materials Science, 6, 482–489. DOI:https://doi.org/10.1016/j.mspro.2014.07.062
  • Azlan A.A., Badrun M.K.A.B., Ali M.T., Awang Z., Saad Z.B.M., Awang A.H.B. (2014). A comparative study of material Leucaena leucocephala stem wood plastic composite (WPC) substrate with FR4 substrate throughout single patch antenna design. Progress In Electromagnetics Research, 59, 151–166. DOI:https://doi.org/10.2528/PIERB14020203

Document Type

undetermined

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f0460efb-df61-4cec-be71-55e1c6cc6599
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.