PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 5 | 30-46
Article title

Powstawanie kraterów impaktowych i ich rodzaje

Content
Title variants
EN
Formation of impact craters and their types
Languages of publication
PL
Abstracts
EN
Craters form after meteoroid or asteroid impact son celestial bodies surface are created during three different periods: contact/compression, excavation and modification stage. Depending on its size the craters can be divided into three main types: simple, complex and multi-ring craters. The enormous energy released during the impact forms evident records in basis as shatter cones or breccias and affect the surrounding rock (visible only in micro scale) by shock metamorphism, which has no equivalent in the Earth’s geological processes.
Year
Volume
5
Pages
30-46
Physical description
References
  • Alvarez W., 2003, Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions, Astrobiology, 3, s. 153–161.
  • Alvarez L.W., Alvarez W., Asaro F., Michel H.V., 1980, Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science, 208, s. 1095–1108.
  • Biała J., 2003, Meteoryt L´Aigle i narodziny meteorytyki, [w:] Ł. Karwowski, A. Gurdziel (red.), Materiały II Seminarium Meteorytowego Olsztyn 2003, Polskie Towarzystwo Meteorytowe, Sosnowiec, s. 6–15.
  • Bland P.A., Artemieva N.A., 2006, The rate of small impacts on Earth, Meteoritics & Planetary Science, 41, s. 607–631.
  • Boher B.F., Modreski P. J., Foord E.E., 1987, Shocked quartz in the Cretaceous – Tertiary boundary clays: Evidence for a global distribution, Science, 236, s. 705–709.
  • Bolten R., Muller D., 1969, Das Tertiarim Nordlinger Ries und in seiner Umgebung, Geologica Bavarica, 61, s. 87–130.
  • Chao E.C.T., 1967, Impact metamorphism, [w:] H. P. Abelson (red.), Researches in Geochemistry, John Wiley and Sons, New York, s. 204–233.
  • Chao E.C.T., Shoemaker E.M., Madsen B.M., 1960, First natural occurrence of coesite, Science, 132, s. 220–222.
  • Claeys P., Casier J.G., 1994, Microtektite-like impact glass associated with the Frasnian-Famennian boundary mass extinction, Earth and Planetary Science Letters, 122, s. 303–315.
  • Claeys P., Casier J.G., Margolis S.V., 1992, Microtektites and mass excintions: Evidence for a Late Devonian asteroid impact, Science, 257, s. 1102–1104.
  • Collins S.G., Melosh J.H., Osinski R.G., 2012, The impact – cratering process, Elements, 8, s. 25–30.
  • Crocket J.H., Officer C.B., Wezel F.C., Johnson G.D., 1988, Distribution of noble metals across the Cretaceous/Tertiary boundary at Gubbio, Italy: Iridium variation as a constraint on the duration and nature of Cretaceous/Tertiary boundary events, Geology, 16, s. 77–80.
  • Croft S.K., 1985, The scaling of complex craters, 15th Proceedings Lunar and Planetary Conference, Journal of Geophysical Research, 90, s. C828–C842.
  • Dence M.R., 1968, Shock zoning at Canadian craters: Petrography and structural implications, [w:] B.M. French, N.M. Short (red.), Shock Metamorphism of Natural Materials, Mono Book Corporation, Baltimore, s. 169–184.
  • Dence M.R., 1971, Impact melts, Journal of Geophysical Research, 76, s. 5552–5565.
  • Dence M.R., Grieve R. A. F., Robertson P. B., 1977, Terrestrial impact structures: Principal characteristics and energy considerations, [w:] D. J. Roddy, O. R. Pepin, B. R. Merrill (red.), Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York, s. 247–275.
  • Dressler B.O., Sharpton V.L., 1997, Breccia formation at a complex impact crater: Slate Islands,Lake Superior, Ontario, Canada, Tectonophysics, 275, s. 285–311.
  • Dressler B.D., Reimold W.U., 2001, Terrestrial impact melt rocks and glasses, Earth-Science Reviews, 56, s. 205–284.
  • Dressler B.D., Grieve R.A.F., Sharpton V.L. (red.), 1994, Large Meteorite Impacts and Planetary Evolution, Geological Society of America Special Paper, 293, s. 348.
  • Dressler B.O., Sharpton V.L., Schuraytz B.C., 1998, Shock metamorphism and shock barometry at a complex impact structure: Slate Islands, Canada, Contributions to Mineralogy and Petrology, 130, s. 275–287.
  • Ebihara M., Miura T., 1996, Chemical characteristics of the Cretaceous–Tertiary boundary layer at Gubbio, Italy, Geochimica et CosmochimicaActa, 60, s. 5133–5144.
  • French B.M., 1968, Shock metamorphism as a geological process, [w:] B. M. French, N. M. Short (red.), Shock Metamorphism of Natural Materials, Mono Book Corporation, Baltimore, s. 1–17.
  • French B.M., 1990, 25 years of the impact-volcanic controversy: Is there anything new under the sun or inside the Earth?, Eos, Transactions, American Geophysical Union, 71, s. 411–414.
  • French B.M., 1998, Traces of Catastrophe. A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures, Lunar and Planetary Institute, Boulevard.
  • French B.M., Short N.M., (red.), 1968, Shock Metamorphism of Natural Materials, Mono Book Corporation, Baltimore.
  • French B.M., Koeberl C., 2010, The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why, Earth-Science Reviews, 98, s. 123 –170.
  • Ganapathy R., 1980, A major meteorite impast on the earth 65 million years ago: Evidence from the Cretaceous – Tertiary boundary clay, Science, 209, s. 921–923.
  • Gault D.E., 1973, Displaced mass, depth, diameter, and effects of oblique trajectories for impact craters formed in dense crystalline rocks, The Moon, 6, s. 32–44.
  • Gault D.E., Quaide W.L., Oberbeck V.R., 1968, Impact cratering mechanics and structures, [w:] B.M. French, N.M. Short (red.), Shock Metamorphism of Natural Materials, Mono Book Corporation, Baltimore, s. 87–99.
  • Gentner W., Wagner G.A., 1969, Altersbestimmungen an Ries glasern und Moldaviten, Geologica Bavarica, 61, s. 296–303.
  • Gentner W., Lippolt H.J., Schaeffer O.A., 1963, Argonbestimmungen an Kaliummineralien-XI. Die KaliumArgon- Alter der Glaser des Nordlinger Rieses und der bohrnischmahrischen Tektite, Geochimica et Cosmochimica Acta, 27, s. 191–200.
  • Glass B.P., Simonson B.M., 2012, Distal impact ejecta Layers: Spherules and More, Elements, 8, s. 43 – 48.
  • Grieve R.A.F., 1987 – Terrestrial impact structures. Annual Review of Earth and Planetary Sciences,15:245–270.
  • Grieve R.A.F., 1991, Terrestrial impact: the record in the rocks, Meteoritics, 26, s. 175–194.
  • Grieve R.A.F., 1997, Extraterrestrial impact events: The record in the rocks and the stratigraphic column, Palaeogeography Palaeoclimatology Palaeoecology, 132, s. 5–23.
  • Grieve R.A.F., Cintala M.J., 1981, A method for estimating the initial impact conditions of terrestrial cratering events, exemplified by its application to Brent crater, Ontario, Proceedings Lunar and Planetary Science, 12B, s. 1607–1621.
  • Grieve R.A.F., Cintala M.J., 1992, An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record, Meteoritics, 27, s. 526–538.
  • Grieve R.A.F., Pesonen L.J., 1992, The terrestrial impact cratering record, Tectonophysics, 216, s. 1–30.
  • Grieve R.A.F., Masaitis V.L., 1994, The economic potential of terrestrial impact craters, International Geology Review, 36, s. 105–151.
  • Grieve R.A.F., Pesonen L.J., 1996, Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies, Earth, Moon, Planets, 72, s. 357–376.
  • Grieve R.A.F., Dence M.R., Robertson P.B., 1977, Cratering process: As interpreted from the occurrence of impact melts, [w:] D.J. Roddy, O.R. Pepin, B.R. Merrill (red.), Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York, s. 791–814.
  • Grieve R.A.F., Robertson P.B., Dence M.R., 1981, Constraints on the formation of ring impact structures, based on terrestrial data, [w:] H.P. Schultz, B.R. Merrill (red.), Multi-Ring Basins: Formation and Evolution, Proceedings Lunar and Planetary Science, 12A, Pergamon, New York, s. 37–57.
  • Grieve R.A.F., Rupert J., Smith J., Therriault A., 1995, The record of terrestrial impact cratering, GSA Today, 5, s. 189–196.
  • Herrick R.R., Sharpton V.L., Malin M.C., Lyons S.N., Feely K., 1997, Morphology and morphometry of impact craters, [w:] S.W. Bougher, D.M. Hunten, R.J. Phillips (red.), Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, University of Arizona, Tucson, s. 1015–1046.
  • Holsapple K.A., Schmidt R.M., 1982, On the scaling of crater dimensions, 2. Impact processes, Journal of Geophysical Research, 87, s. 1849–1870.
  • Holsapple K.A., Schmidt R.M., 1987, Point source solutions and coupling parameters in cratering mechanics, Journal of Geophysical Research, 92, s. 6350–6376.
  • Huttner R., Schmidt-Kaler H., 1999, Erlauterungenzur geologischen Karte des Rieses 1:50000,GeologicaBavarica, 104, s. 7–76.
  • Kenkmann T., Artemieva N.A., Wünnemann K., Poelchau M.H., Elbeshausen D., Núńez Del Prado H., 2009, The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage, Meteoritics & Planetary Science, 44, s. 985–1000.
  • Kieffer S.W., Simonds C.H., 1980, The role of volatiles and lithology in the impact cratering process, Reviews of Geophysics and Space Physics, 18, s. 143–181.
  • Koeberl C., Henkel H., (red.), 2005, Impact Tectonics, Impact Studies, vol. 6. Springer, Heidelberg.
  • Koeberl C., Masaitis V.L., Shafranovsky G.I., Gilmour I., Langenhorst F., Schrauder M., 1997, Diamonds from the Popigai impact structure, Russia, Geology, 25, s. 967–970.
  • Kring D.A., 1993, The Chicxulub impact event and possible causes of K/T boundary extinctions, [w:] D. Boaz, M. Dornan (red.), Proceedings of the First Annual Symposium of Fossils of Arizona, Mesa Southwest Museum and Southwest Paleontological Society, Mesa, s. 63–79.
  • Kring D.A., 1997, Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment, Meteoritics& Planetary Science, 32, s. 517–530.
  • Krinov E.L., 1966, Giant Meteorites, Pergamon, New York.
  • Lange J.M., 1996, Tektite glasses from Lusatia (Lausitz), Germany, Chemie der Erde, 56, s. 498–510.
  • Leroux H., Warme J.E., Doukhan J.C., 1995, Shocked quarz in the Alamo breccia, southern Nevada: Evidence for a Devonian impact event, Geology, 23, s. 1003–1006.
  • Love S.G., Brownlee D.E., 1993, A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 262, s. 550–553.
  • Masaitis V.L., 1998, Popigai crater: Origin and distribution of diamond-bearing impactites, Meteoritics& Planetary Science, 33, s. 349–359.
  • Maxwell D.E., 1977, Simple Z model of cratering, ejection, and the overturned flap, [w:] D.J. Roddy, O.R. Pepin, B.R. Merrill (red.), Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York, s. 1003–1008.
  • Mchone J.F., Nieman R.A., Lewis C.F., Yates A.M., 1989, Stishovite at the Cretaceous Tertiary boundary Raton, New Mexico,Science, 243, s. 1182–1184.
  • McLaren D.J., 1970, Time, life and boundaries, Journal of Paleontology, 44, s. 801–815.
  • Melosh H.J., 1989, Impact Cratering: A Geologic Process, Oxford University, New York.
  • Milton D.J., 1977, Shatter cones – An outstanding problem in shock mechanics, [w:] D.J. Roddy, O.R. Pepin, B.R. Merrill (red.), Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York, s. 703–714.
  • Milton D.J., Glikson A.Y., Brett R., 1996, Gosses Bluff – A latest Jurassic impact structure, central Australia. Part I: Geological structure, stratigraphy, and origin, AGSO Journal of Australian Geology and Geophysics, 16, s. 453–486.
  • Milton D.J., Barlow B.C., Brett R., Brown A.R., Glikson A.Y., Manwaring E.A., Moss F.J., Sedmik E.C.E., Van Son J., Young G.A., 1972, Gosses Bluff impact structure, Australia, Science, 175, s. 1199–1207.
  • Morgan J., Warner M., Brittan J., Buffler R., Camargo A., Christeson G., Denton P., Hildebrand A., Hobbs R., Macintyre H., Mackenzie G., Maguire P., Marin L., Nakamura Y., Pilkington M., Sharpton V., Snyder D., Suarez G., Trejo A., 1997, Size and morphology of the Chicxulub impact crater, Nature, 390, s. 472–476.
  • Nicolaysen L.O., Reimold W.U., 1990, Cryptoexplosions and catastrophes in the geological record, with a special focus on the Vredefort structure, Tectonophysics, 171, s. 1–422.
  • O’Keefe J.D., Ahrens T.J., 1982, Cometary and meteorite swarm impact on planetary surfaces, Journal of Geophysical Research, 87, s. 6668–6680.
  • Premović P.I., 2009, The Conspicuous Red “Impact" Layer of the Fish Clay at Hřjerup (Stevns Klint, Denmark), Geochemistry International, 47, s. 513–521.
  • Racki G., Machalski M., Koeberl C., Harasimiuk M., 2011, The weathering-modified iridium record of a new Cretaceous–Palaeogene site at Lechówka near Chełm, SE Poland, and its palaeobiologic implications,Acta Palaeontologica Polonica, 56, s. 205–215.
  • Reimold U.W., Jourdan F., 2012, Impact! – Bolides, Craters And Catastrophes, Elements, 8, s. 19–24.
  • Robertson P.B., 1975, Zones of shock metamorphism at the Charlevoix impact structure, Quebec, Geological Society of America Bulletin, 86, s. 1630–1638.
  • Roddy D.J., Davis L.K., 1977, Shatter cones formed in large scale experimental explosion craters, [w:] D.J. Roddy, O.R. Pepin, B.R. Merrill (red.), Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York, s.715–750.
  • Roddy D.J., Pepin R.O., Merrill R.B., (red.), 1977, Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York.
  • Ryder G., Fastovsky D., Gartner S., 1996, The Cretaceous- Tertiary Event and Other Catastrophes in Earth History, Geological Society of America Special Paper, 307, s. 569.
  • Schmitz B., Andersson P., Dahl J., 1988, Iridium, sulfur isotopes and rare earth elements in the Cretaceous – Tertiary boundary clay at Stevns Klint, Denmark, Geochimica et Cosmochimica Acta, 52, s. 229–236.
  • Schultz P.H., Merrill R.B., (red.), 1981, Multi-Ring Basins: Formation and Evolution, Proceedings Lunar and Planetary Science 12A, Pergamon, New York.
  • Sharpton V.L., Ward P.D., (red.), 1990, Global Catastrophes in Earth History: An Interdisciplinary, Conference on Impacts, Volcanism, and Mass Mortality, Geological Society of America Special Paper, 247, s. 631.
  • Sharpton V.L., Dalrymple G.B., Martin L.E., Ryder G., Schuraytz B.C., Urrutia-Fucugauchi J., 1992, New links between the Chicxulub impact structure and the Cretaceous – Tertiary boundary, Nature, 359, s. 819–821.
  • Sharpton V.L., Dressler B.O., Herrick R.R., Schneiders B., Scott J., 1996, New constraints on the Slate Islands impact structure, Ontario, Canada, Geology, 24, s. 851–854.
  • Sharpton V.L., Marín L.E., Carney J.L., Lee S., Ryder G., Schuraytz B.C., Sikora P., Spudis P.D., 1996, A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples, [w:] G. Ryder, D. Fastovsky, S. Gartner (red.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, Geological Society of America Special Paper, 307, s. 55–74.
  • Sharpton V.L., Burke K., Camargo-Zanoguera A., Hall S.A., Lee D.S., Marín L.E., Suárez-Reynoso G., Quezada-Muneton J.M., Spudis P.D., Urrutia-Fucugauchi J., 1993, Chicxulub multiring impact basin: Size and other characteristics derived from gravity analyses, Science, 261, s. 1564–1567.
  • Shoemaker E.M., 1963, Impact mechanics at Meteor Crater, Arizona, [w:] B.M. Middlehurst, G.P. Kuiper (red.), The Moon, Meteorites, and Comets, University of Chicago, Chicago, s. 301–336.
  • Shoemaker E.M., 1977, Why study impact craters?, [w:] D.J. Roddy, O.R. Pepin, B.R. Merrill (red), Impact and Explosion Cratering: Planetary and Terrestrial Implications, Pergamon, New York, s. 1–10.
  • Shoemaker E.M., Chao E.C.T., 1961, New evidence for the impact origin of the Ries Basin, Bavaria, Germany, Journal of Geophysical Research, 66, s. 3371–3378.
  • Spencer J.R., Mitton J. (red.), 1995, The Great Comet Crash: The Impact of Comet Shoemaker-Levy 9 on Jupiter, Cambridge University, New York.
  • Spudis P.D., 1993, The Geology of Multi-Ring Impact Basins: The Moon and Other Planets, Cambridge University, New York.
  • Staudacher T., Jessberger E.K., Dominik T.K., Schaeffer O.A., 1982, 40Ar-39Ar ages of rocks and glasses from the NordlingerRies crater and the temperature history of impact breccias, Journal of Geophysics, 51, s. 1-11.
  • Stöffler D., 1966, Zones of impact metamorphism in the crystalline rocks at the Nördlinger Ries Crater, Contributions to Mineralogy and Petrology, 12, s. 15–24.
  • Stöffler D., 1971, Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters, Journal of Geophysical Research, 76, s. 5541–5551.
  • Stöffler D, 1972, Deformation and transformation of rockforming minerals by natural and experimental shock processes: I. Behavior of minerals under shock compression, Fortschritte Der Mineralogie, 49, s. 50–113.
  • Stöffler D., 1984, Glasses formed by hypervelocity impact, Journal of Non-Crystalline Solids, 67, s. 465–502.
  • Stoffler D., Ostertag R., 1983, The Ries impact crater, Fortschr Mineral, 61, s. 71–116.
  • Stöffler D., Langenhorst F., 1994, Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory, Meteoritics, 29, s. 155–181.
  • Stöffler D., Artemieva N.A., Pierazzo E., 2002, Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field, Meteoritics & Planetary Science, 37, s. 1893–1907.
  • Swisher C.C., Grajales-Nishimura J.M., Montanari A., Margolis S.V., Claeys P., Alvarez W., Renne P., Cedillo-Pardo E., Maurasse F.J.M., Curtis G.H., Smit J., Andwilliams M.O., 1992, Coevall 40Ar/ 39Ar ages of the 65.0 million years ago from Chicxulub crater melt rock and Cretaceous – Tertiary boundary tektites, Science, 257, s. 954–958.
  • Taylor S.R., 1992, Solar System Evolution: A New Perspective, Cambridge University, New York.
  • Tymiński Z., 2013, W leju po Morasku – spostrzeżenia na temat małych kraterów meteorytowych, Cyrqlarz, 206, s. 13–15.
  • Wójcik-Tabol P., 2012, Poszukiwany świadek naoczny impaktu – kwarc wstrząsowy, Przegląd Geologiczny, 5, s. 263–266.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-f005c55f-1b5d-476a-b620-dc1b9c3345f5
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.